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Abstract
The soundness of risk monitoring and measuring systems is a key point for the reliability of 
financial institutions. One of the features of a reliable risk model is that it passes a backtesting 
procedure – a comparison of the one step ahead risk estimation and a true loss occurred on a 
given day – without any troubles. Within this paper, basic tests to backtesting procedure due to 
Kupiec, Christoffersen and Haas are applied on a portfolio sensitive to equity and FX rate risk. 
In particular details, we focus on NIG model and its variants due to various time spans used 
for parameter estimation. We document a significant improvement of such tail risk models on 
several portfolio positions.

Key words: backtesting, market risk, model validation, subordinated Lévy model, ordinary elliptical copula 
function.

1. INTRODUCTION
Financial risk modeling and its subsequent management is a very important and no less chal-
lenging task of quantitative units of financial institutions, such as banks, insurance companies, 
or securities firms. An efficient management of financial risk can increase the performance of 
any given entity. Generally, taking additional risk can, on average, increase the return on eq-
uity. However, considering a particular mix of stakeholders, there always exist some risk limits, 
which should not be exceeded. Otherwise, the business would become more risky than desired. 
Evidently, under standard assumption of convex utility function it would have negative impact 
on the entity value as perceived by a particular mix of stakeholders.
Since the standard market model based on Gaussian distribution does not describe the real 
market features well, several interesting alternatives to market risk modeling have been sug-
gested. Recently, some of these alternatives have been carefully examined and tested. For ex-
ample, Alexander and Sheedy (2008) assumed Gaussian/Student/GARCH/Empirical models 
for a simple position and Rank (2007) analyzed similar multi-position models joined by several 
copula functions. However, Tichý (2010) made a further contribution by analyzing the per-
formance of ordinary elliptical copula Lévy driven models for FX rate sensitive portfolio risk 
estimation (i.e. the skewness and kurtosis in the marginal distribution and potentially a non-
linearity, but still symmetry in the dependency was allowed by parametrical approach). 
The author applied the two most popular subordinated Lévy models – variance gamma model 
and normal inverse Gaussian model, though, almost the same results were provided. Since 
the definition of the variance gamma model is rather complicated, the evaluation of the in-
verse function to the distribution function (necessary for copula function usage) is very costly. 
Hence, in this paper we restrict ourselves to the normal inverse Gaussian model, which allows 
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us to utilize an approximation to its distribution function and evaluate the model with 100 000 
scenarios in a reasonable time – note, that in order to test the model in line with Kupiec’s (1995) 
and Christofersson’s (1998) backtesting procedure, we need to repeat the algorithm day-by-day 
for more than 11 years in our case. Furthermore, we extend the analysis into internationally 
diversified portfolio as suggested by Kresta (2011a,b).
We proceed as follows. First subordinated Lévy models are defined. Then, the copula approach 
to joint distribution modeling is briefly explained and the exception tests are described. Finally, 
the data set consisting of four equities and FX rates is described and simulation results are 
provided.

2. METHODOLOGY
In this paper we try to examine whether the subordinated Lévy models joined by a suitable 
elliptical copula functions are eligible to estimate the risk of a FX-equity portfolio. Hence, we 
assume several distinct risk factors, i.e. a marginal (independent) distribution modeled by a 
special type of models allowing one to fit also the higher moments of the distribution (defined 
in subsection 2.1), which are coupled together by elliptical ordinary copula functions in order 
to get the joint portfolio distribution (defined in subsection 2.2). In order to examine the 
suitability of such approach for risk estimation, the VaR (i.e. risk estimation) is compared to 
the true observed loss on a day-by-day basis. Next, the sequence of 0’s and 1’s (exceptions, i.e. 
model failure) is tested on (un)conditional coverage (described in subsection 2.3).

2.1 Marginal distribution by subordinated Lévy models
The first focus on Lévy models with jumps goes back to 1930’s. The most recent and complete 
monographs on the theory behind and/or application of Lévy models are e.g. Applebaum 
(2004) or Cont and Tankov (2004). However, a subordinated Lévy model, a rather non-stand-
ard definition of Lévy models as time changed Brownian motions, goes back to Clark (1973) 
or even Bochner (1949). 
Generally, a Lévy process is a stochastic process, which is zero at origin, its path in time is 
right-continuous with left limits and its main property is that it is of independent and station-
ary increments. Another common feature is a so called stochastic continuity. Moreover, the 
related probability distribution must be infinitely divisible. The crucial theorem is the Lévy-
Khintchine formula: 

(1)       dxiuxIiuxuuiu x νσγ 
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For a given infinitely divisible distribution, we can define the triplet of Lévy characteristics,
   dxνσγ ,, 2

The former two define the drift of the process (deterministic part) and its diffusion. The latter 
is a Lévy measure. If it can be formulated as     dxxudx ν , it is a Lévy density. 
Let X be a Brownian motion (BM). If we replace standard time t in Brownian motion X ,
     tZdttX σµσµ ;;   (2)
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by its suitable function l(t) as follows:
            tltltlZtltlX ϑεθϑθϑθ ;;    (3)

we get a subordinated Lévy model. Due to the simplicity (tempered stable subordinators with 
known density function in the closed form), the most suitable candidates for function l(t) seem 
to be either the variance gamma model – the overall process is driven by a gamma process 
from the gamma distribution with shape a and scale b depending solely on variance к, G[a,b] , 
or normal inverse Gaussian (NIG) model – the subordinator is given by an inverse Gaussian 
process based on the inverse Gaussian distribution, IG[1,1/v] . Hence, in the particular case of 
NIG model, we get  . Hence, if we model a variable, which can be both positive and negative 
(e.g. price returns), we can proceed as follows:

 (4)      ttlXttx θµ 

so that the long-term drift is fit again.

2.2 Copula functions
A useful tool for dependency modeling are the copula functions, i.e. the projection of the de-
pendency among particular distribution functions into [0,1] , 
       ,...3,2, o1,01,0:  nRnC nn  (5)

In this paper, we restrict ourselves to ordinary copula functions. Basic reference for the theory 
of copula functions is Nelsen (2006), while Rank (2007) and Cherubini et al. (2004) target 
mainly on the application issues in finance. Alternatively, Lévy processes can be coupled on 
the basis of Lévy measures by Lévy copula functions. However, this approach is not necessary 
in our case.
Actually, any copula function can be regarded as a multidimensional distribution function with 
marginals in the form of standardized uniform distribution.
For simplicity, assume two potentially dependent random variables with marginal distribution 
functions FX , FY  and joint distribution function FX,Y . Then, following the Sklar’s theorem: 

       yFxFCyxF YXYX ,,,     (6)

If both FX , FY are continuous, a copula function C is unique. Sklar’s theorem implies also an 
inverse relation,
.  (7)

The formulation above should be understood such that the joint distribution function gives us 
two distinct information: (i) marginal distribution of random variables, (ii) dependency func-
tion of distributions. Hence, while the former is given by FX(x) and FY(y) , a copula function 
specifies the dependency, nothing less, nothing more. That is, only when we put both informa-
tion together, we have sufficient knowledge about the pair of random variables X, Y .
It is therefore obvious that the n-dimensional subordinated Lévy model can be defined by 
terms of ordinary elliptical copula functions as follows:

       vFuFFvuC YXYX
11
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         nnnXXX xFxFxFCxxxF
n

,...,,,...,, 221121,...,, 21
   (8)

where Fi(xi)  states for marginal distribution, i.e. a suitable subordinated Lévy model, which can 
be different for particular i, and C  is ordinary elliptical copula function.
There exist three main approaches to parameter estimation for copula function based depend-
ency modeling: exact maximum likelihood method (EMLM), inference function for margins 
(IFM), and canonical maximum likelihood (CML). While for the former all parameters are 
estimated within one step, which might be very time consuming, mainly for high dimensional 
problems or complicated marginal distributions, the latter two methods are based on esti-
mating the parameters for the marginal distribution and parameters for the copula function 
separately. While assuming IFM, marginal distributions are estimated in the first step and the 
copula function in the second one, for CML instead of parametric margins empirical distribu-
tions are used.

2.3 Backtesting
Within the backtesting procedure, the ability of a given model to estimate the future loses is 
to be tested. In the context of the market risk, the backtesting procedure can be applied on 
models in the form of VaR, cVaR or even overall distribution of the losses. Loosely speaking, 
applying the historical data, i.e. true evolution of the market prices of financial instruments, the 
risk is estimated at time t for time t + ∆t, where ∆t is usually set to 1 business day, and compared 
with the true loss observed at time t +∆t. This procedure is applied for moving time window 
over the whole data set.
In line with the standards for bank supervision as defined within Basel II, let us assume that 
the risk is estimated for one day horizon, ∆t = 1. Denote Value at Risk of a portfolio X esti-
mated at day t for the next day t + 1 on a given significance level α as VaRX(t, t + 1; α) and the 
true loss observed at t + 1 with respect to the preceding day t as LX(t, t + 1).
Within the backtesting procedure on a given time series {1,2,…,T}, two situations can arise 
– the loss is higher than its estimation or lower (from the stochastic point of view, the equality 
shouldn’t arise). While the former case is denoted by 1 as an exception, the latter one is denoted 
by zero. In this way, we get the sequence  

 Ô
mtX átI  1),  ({   , where m is a number of data 

(days) needed for the initial estimation. On the sequence, it can be tested whether the number 
of ones (exceptions) corresponds with the assumption, i.e. α n (where n = T–1–m), whether the 
estimation is valid either unconditionally or conditionally, whether bunching is present, etc.
Kupiec’s test (Kupiec, 1995) is derived from a relative amount of exceptions, i.e. whether their 
number is from the statistical point of view different from the assumption. A given likelihood 
ratio on the basis of χ2 probability distribution with one degree of freedom is formulated as 
follows:
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where �ex is expected probability of exception occurring, �obs  is observed probability of excep-
tion occurring, n0  is the number of zeros and n1 is the number of ones. The Kupiec’s test takes 
into account only the number of exceptions. By contrast, in order to asses whether the excep-
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tions are distributed equally in time, i.e. without any dependency (autocorrelation), we should 
define the time lag first: in Christoffersen (1998) it is defined as the stage, when exception at 
one time moment can significantly help to identify whether another exception will (not) follow 
on the subsequent day. Therefore, we replace the original sequence by a new one, where 01, 00, 
11 or 10 is recorded. Then we have the likelihood ratio as follows:
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where     iIjI ttij  1Prπ    and 
 

11100100

1101

nnnn

nn
obs 


π .

Obviously, we can evaluate these two tests together by calculating the following likelihood 
ratio:
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In Christoffersen test (both condition and unconditional) we are interested in testing only the 
lag of one day between the exceptions. Haas (2001) proposed the extension of the Kupiec time 
until first failure test (TUFF test). In order to employ this test, we have to calculate the times 
between subsequent exceptions  )({ iF  as a difference of times in which the i -th and (i-1) -th 
exception occurred (for the first exception we measure the time from the beginning of back-
testing period). Then for n1 exceptions Haas test is based on the following likelihood ratio:
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This test statistic has chi-squared distribution with n1 degrees of freedom.

3. RESULTS
The data set we consider in this study comprises of daily closing prices of four well established 
equity indices – Down Jones Industrial Average (DJI) from the US market, FTSE 100 (FTSE) 
from London (UK), Nikkei 225 (N225) from Tokyo ( Japan) and Swiss Market Index (SMI) 
from Switzerland – over preceding 20 years ( January 1, 1990 to December 31, 2009). However, 
the indices are denominated in four distinct currencies, in particular the US dollar (USD), Brit-
ish pound (GBP), Japan yen ( JPY) and Swiss franc (CHF). This fact extends our data set to 8 
distinct time series. Since the trading days at particular markets are not always harmonized, we 
had to interpolate missing data. In this way we get eight time series of 4,939 log-returns. 
Basic descriptive statistics of daily log-returns are apparent from Table 1. In particular for each 
index and currency the minimal and maximal return, its mean (expected value), median and 
standard deviation and two higher moments, the skewness and kurtosis, are recorded.
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Tab. 1 – Descriptive statistics of FX rate returns. Source: Author’s calculations

Time 
series

Min 
return

Max 
return

Mean Median St.dev. Skewness Kurtosis

DJI -8.201% 10.508% 0.029% 0.045% 1.100% -0.060 12.042
FTSE -9.265% 9.384% 0.019% 0.042% 1.136% -0.103 9.983
N225 -12.111% 10.086% -0.017% 0.004% 1.479% -0.248 7.894
SMI -8.383% 10.788% 0.032% 0.082% 1.177% -0.127 9.420
USD -4.818% 8.208% -0.008% -0.023% 0.694% 0.449 10.160
GBP -4.937% 7.922% -0.012% -0.005% 0.602% 0.249 14.535
JPY -5.253% 7.995% -0.001% -0.034% 0.819% 0.464 8.552
CHF -3.063% 7.313% -0.004% -0.013% 0.519% 0.790 14.791

We utilize the input data to construct positions/portfolios as follows: (i) firstly we assume 
investment into single stock index from the point of view of the Czech investor – that is why 
we always have to assume two risk drivers (stock index and particular currency), (ii) market 
portfolio, ∏m, (iii) equally weighted portfolio – weight of each asset in portfolio is equal to 0.25, 
∏ew, and (iv) portfolio with minimum variance, ∏mv. Note, that the composition of ∏m  and ∏mv 
was estimated on the basis of the whole dataset assuming that we know the future evolution. 
The estimated weights of these portfolios are summarized in Table 2.

Tab. 2 – Weights of assets in portfolios. Source: Author’s calculations

Portfolio DJI, USD FTSE, GBP N225, JPY SMI, CHF
market portfolio, ∏ 29.79 % 0.00 % 0.00 % 70.21 %
equally weighted portfolio, ∏ew 25.00 % 25.00 % 25.00 % 25.00 %
portfolio with minimum vari-
ance, ∏mv

34.25 % 11.15 % 21.62 % 32.98 %

Evolution of particular portfolios’ values is depicted in Fig. 1 (price of each asset was normal-
ized to 1 at the beginning so that the evolution is comparable). If we compare evolutions of 
single stock indices from the point of view of the Czech investor we can conclude that all such 
investments would lose the value since the beginning of this century due to relatively strong 
appreciation of Czech koruna. Also we can see that market portfolio, that consist of the only 
two efficient assets, gains more than 200% profit in 1991–2009. On the other hand the other 
two portfolios provided only 50% profit in history of almost 20 years. 
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Fig. 1 – Evolution of chosen portfolios. Source: Author’s calculations

3.1 Selected models comparison
Four distinct models will be assumed first in order to estimate the risk as given by Value at Risk 
measure (with significances α = 0.15, 0.05, 0.01, 0.005): (i) normal distribution (Brownian mo-
tion, BM) coupled together by Gaussian copula (BM-Ga), (ii) normal distribution coupled to-
gether by Student copula (BM-St), (iii) NIG distribution coupled together by Gaussian copula 
(NIG-Ga) and (iv) NIG distribution coupled together by Student copula (NIG-St).
In line with subsection 2.1, the parameters of marginal distributions are estimated by means 
of method of moments from previous 60 observations (for NIG distribution the estimation of 
the kurtosis is based on previous 2000 observations) – we use the method of moments because 
of computing complexity of the maximum likelihood method, which makes unreasonably time 
requirements. Next, the CML approach was used for copula parameters estimation utilizing 
always 250 past observations.
Numbers of exceptions for particular models/positions&portfolios/significances are depicted 
in Table 3, “winning” models are distinguished by bold font. If we take into account only the 
number of winning cases, the best choice is to couple NIG marginals with Student copula 
function, assuming that we are interested in the risk of the far tails. However, for α = 5%, 
Brownian motion, either with Gaussian or Student copula, overcome NIG models. Similarly, 
with α = 15 %, NIG-Ga is better than NIG-St, while BM-St is better than BM-Ga. Hence, 
there is still significant impact of the tails, which might be modeled either by marginals or 
(artificially) by copulas.
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Tab. 3 – Number of exceptions over 1998–2009, BM-Ga/BM-St/NIG-Ga/NIG-St. Source: 
Author’s calculations

Portfolio
N. of exception 

(α=15%)
N. of exception 

(α=5%)
N. of exception 

(α=1%)
N. of exception 

(α=0.5%)
Assumption 440.85 146.95 29.39 14.70
DJI&USD 389/394/���/��� 155/1��/171/172 50/48/33/�� 35/34/1�/1�

FTSE&GBP 403/�0�/477/484 1��/170/176/177 55/53/�1/32 35/33/1�/13
N225&JPY 387/393/���/444 145/1��/146/1�� 53/46/��/27 36/32/1�/1�
SMI&CHF 376/381/���/492 146/1��/154/155 61/54/28/�� 41/38/12/1�

∏m 382/392/���/473 1�1/162/166/168 67/58/32/�� 40/33/1�/12
∏ew 401/419/���/467 1�1/172/174/178 51/42/32/�� 33/26/22/1�
∏mv 412/427/���/470 166/1��/170/175 57/49/32/�� 34/24/17/1�

While the estimation of BM is very simple, when dealing with NIG model, one has to take into 
account information of different nature – see e.g. Kresta and Tichý (2012). Especially the kur-
tosis is related to rare events that by nature cannot arise frequently and are difficult to estimate 
within short time horizon. By contrast, the standard deviation as well as the basic measure of 
dependency can change suddenly, e.g. due to the regime switching. 
In Table 4 and 5 we therefore provide results for BM-St and NIG-St separately according to 
the estimation period. In particular, we examine the time span of 30/60/250 day for the former 
and 60-60-2000/250-250-250/250-250-2000/250-2000-2000 days for the latter with different 
time span for estimation of particular moments of the distribution (different time spans are 
denoted as follows: mean and standard deviation-skewness-kurtosis). In contrast to Table 3, 
we distinguish by bold font the results, which are significant at 5% probability level according 
to the Kupiec’s unconditional test.

Tab. 4 – Number of exceptions over 1998–2009, BM-St, estimated from 30/60/250 days. 
Source: Author’s calculations

Portfolio
N. of exception 

(α=15%)
N. of exception 

(α=5%)
N. of exception 

(α=1%)
N. of exception 

(α=0.5%)
Assumption 440.85 146.95 29.39 14.70
DJI&USD ���/��0/394 1�0/1��/1�� 52/55/48 35/36/34

FTSE&GBP ���/���/�0� 193/181/1�0 53/49/53 37/34/33
N225&JPY ���/��0/393 186/1��/1�� 51/47/46 28/33/32
SMI&CHF 481/���/381 180/179/1�� 61/64/54 37/46/38

∏m 491/���/392 182/177/162 48/59/58 29/29/33
∏ew ���/���/�1� 192/182/172 45/50/42 27/29/26
∏mv ���/���/��� 181/174/1�� ��/48/49 23/25/24

According to the results in Table 4, it is apparent that BM is not suitable to fit the tail risk with 
any time span. However, if we wish to estimate the risk at 15% probability level, the most suit-
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able time span is 60 days, i.e. two months, which is given by short term nature of the volatil-
ity. By contrast, if we decide to apply the NIG model (Table 5) we can see that all considered 
combinations provide us significantly good estimation of the tail risk – we can say that the last 
combinations provide slightly better results. 

Tab. 5 – Number of exceptions over 1998–2009, NIG-St, estimated from 60-60-2000/250-
250-250/250-250-2000/250-2000-2000 days. Source: Author’s calculations

Portfolio
N. of exception 

(α=15%)
N. of exception 

(α=5%)
N. of exception 

(α=1%)
N. of exception 

(α=0.5%)
Assumption 440.85 146.95 29.39 14.70
DJI&USD 536/���/486/489 180/1��/172/176 ��/��/��/�� 1�/24/1�/1�

FTSE&GBP 517/���/484/484 201/1�0/177/179 ��/�0/��/�0 �1/1�/1�/1�
N225&JPY 485/��0/���/��� 171/1��/1��/1�� ��/�1/��/�� 1�/1�/1�/1�
SMI&CHF 534/���/492/497 186/1��/1��/1�0 ��/��/��/�0 1�/1�/1�/1�

∏m 561/���/���/��� 200/1��/1��/175 ��/��/��/�0 1�/1�/1�/1�
∏ew 517/�0�/���/��� 201/1�0/178/182 ��/��/��/�� 1�/1�/1�/�0
∏mv 520/�1�/��0/��0 203/1��/175/177 ��/�0/��/�1 1�/1�/1�/1�

3.2 Advance testing
However, to asses the model’s power more rigorously, some kind of advance test should be 
evaluated. In Table 6 and 7, p-values of Christoffersen conditional test are provided – once 
again, in bold we denote models that are statistically significant at 5% probability level. The 
general conclusion made on the basis of preceding tables is confirmed. Concerning the tails, 
NIG model – if estimated efficiently – often provides very high p-values, while BM might be 
accepted at much lower probability. Another interesting observation is that when particular 
models are applied for the portfolio with α = 15%, the results are very poor (compare to tails 
or single positions).

Tab. 6 – Christoffersen conditional test for BM-St, estimated from 30/60/250 days. Source: 
Author’s calculations

Portfolio p-value (α=15%) p-value (α=5%) p-value (α=1%)
p-value 

(α=0.5%)
DJI&USD 0.��/0.0�/0.1� 0.�/0.��/0.�� 0.1�/0.1�/0.� 0.��/0.��/0.��

FTSE&GBP 0.��/0.�/0.�� 0.��/0.��/0.05 0.��/0.0�/0 0.0�/0.�/0.01
N225&JPY 0.��/0.��/0.�� 0.�/0.��/0.� 0.��/0.��/0.04 0.��/0.0�/0.05
SMI&CHF 0.��/0.03/0.01 0.��/0.�1/0 0.1�/0.0�/0.0� 0.0�/0.�/0.�1

∏m 0.��/0.04/0.01 0.��/0.03/0 0.��/0.��/0.1� 0.��/0.��/0.0�
∏ew 0.02/0/0 0/0/0 0.03/0.��/0.02 0.02/0.��/0.��
∏mv 0/0/0 0.04/0/0 0.11/0.��/0 0.17/0.5/0.19
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Tab. 7 – Christoffersen conditional test for NIG-St, estimated from 60-60-2000/250-250-
250/250-250-2000/250-2000-2000 days. Source: Author’s calculations

Portfolio p-value (α=15%) p-value (α=5%) p-value (α=1%) p-value (α=0.5%)
DJI&USD 0.��/0.03/0.01/0 0.��/0.��/0.��/0.� 0.��/0.�/0.��/0.�� 0.��/0.��/0.��/0.��

FTSE&GBP 0.��/0.02/0.05/0.04 0.0�/0.0�/0.0�/0.0� 0.0�/0/0.0�/0.31 0.01/0.��/0.��/0.��

N225&JPY 0.�1/0.��/0.��/0.�� 0.��/0.��/0.�/0.�� 0.��/0.��/0.��/0.�� 0.��/0.��/0.�/0.11

SMI&CHF 0.02/0/0/0 0.�/0/0/0 0.0�/0.��/0.��/0.�1 0.��/0.0�/0.05/0.04

∏m 0/0/0/0 0/0/0/0 0.��/0.0�/0.03/0.04 0.��/0.0�/0.04/0.04

∏ew 0/0/0/0 0/0/0/0 0.11/0.03/0.��/0.�� 0.0�/0.�1/0.��/0.��

∏mv 0/0/0/0 0/0/0/0 0.0�/0.�1/0.��/0.�� 0.0�/0.0�/0.��/0.��

In Tables 8 and 9 in Appendix, the results obtained via Haas test are provided. However, the 
results are very poor and we cannot see any improvement even when changing the model or 
the way in which its parameters are estimated. The usefulness of this type of test therefore 
seems to be doubtful.

4. CONCLUSION
The presence of jumps and unexpected decreases (increases) in price provide very challenging 
task on any risk model. A common approach to evaluate the ability of the model to estimate 
the risk soundly is known as backtesting. The models can be tested from several points of view. 
In this paper we accompanied the basic test of Kupiec, which is based only on the number of 
exceptions, by testing their independency in time, due to Christoffersen, and then we com-
bined these two tests into complex conclusion about the model suitability to risk measuring 
and managing. Apparently, we have shown that the NIG model is an ideal choice for tail risk 
measuring in case that an ideal combination of the estimation procedure can be identified. 
Here, we obtained the true number of exception as very close to the assumption, as well as we 
confirmed the independency of exceptions in time.
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Appendix
Tab. 8 – Haas test for BM-St, estimated from 30/60/250 days. Source: Author’s calculations

Portfolio p-value (α=15%) p-value (α=5%) p-value (α=1%) p-value (α=0.5%)

DJI&USD 0/0/0 0/0/0 0.��/0.01/0 0.1/0.02/0

FTSE&GBP 0/0/0 0/0/0 0.�/0/0 0.0�/0/0

N225&JPY 0.04/0.01/0 0.01/0/0 0.05/0/0 0.��/0/0

SMI&CHF 0/0/0 0/0/0 0/0/0 0.01/0/0

∏m 0/0/0 0/0/0 0.02/0/0 0.0�/0.01/0

∏ew 0/0/0 0/0/0 0.01/0/0 0/0/0

∏mv 0/0/0 0/0/0 0.02/0/0 0.0�/0.��/0

Tab. 9 – Haas test for NIG-St, estimated from 60-60-2000/250-250-250/250-250-2000/250-2000-2000 days. 
Source: Author’s calculations

Portfolio p-value (α=15%) p-value (α=5%) p-value (α=1%) p-value (α=0.5%)

DJI&USD 0/0/0/0 0/0/0/0 0.03/0/0/0 0.0�/0.01/0.02/0

FTSE&GBP 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

N225&JPY 0.01/0/0/0 0.02/0/0/0 0/0/0/0 0.1�/0/0.05/0

SMI&CHF 0/0/0/0 0/0/0/0 0/0/0/0 0.��/0/0/0

∏m 0/0/0/0 0/0/0/0 0/0/0/0 0.0�/0/0/0

∏ew 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

∏mv 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0.01


