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ABSTRACT 

Addressing the trans-regional and dynamic transmission characteristics of air pollution 

is a considerable challenge for sustainable environmental management. Based on the 

sample data from 26 Yangtze River Delta (YRD) cities in the period of 2015-2022, this 

study employed a series of statistical and econometric methods, including spatial 

Markov chain, social cooperation network, weighted entropy method and spatial 

Durbin econometric model, to measure the dynamic inter-regional distribution shifts of 

air pollutants in YRD, the collaborative network involvement of the regional 

atmospheric collaborative governance and its effectiveness on atmospheric governance 

performance. It found a strong positive correlation among pollutants across different 

locations within YRD cities. The network structure of the collaborative regulation in 

YRD remains unstable with the cooperation density remaining at a low level despite a 

notable annual increase in collaborative intensity. The atmospheric governance 

performance has yielded substantially outstanding results. Furthermore, the 

effectiveness of regional atmospheric collaborative governance on atmospheric 

governance performance holds true, with the effects being more obvious in cities with 

more developed urbanisation and economy. Our research provides an important 

reference for the collaborative environmental regulation in other regions and China to 

achieve effective air pollution control and economic growth.  
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1. INTRODUCTION 

China’s rapid economic growth has been accompanied by heightened concerns on 

environmental pollution, particularly atmospheric pollution. The trans-regional and 

dynamic transmission characteristics of atmospheric pollution are an important 

challenge for sustainable environmental management. Considering that air pollution is 

a widespread and trans-regional ecological challenge, no single region can effectively 

address it on its own (Liu et al., 2020). Data from the Ministry of Ecology and 
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Environment indicate that the average proportion of days with good air quality in 339 

prefecture-level cities across China reached 85.8% and the average proportion of days 

with heavy and severe pollution decreased to 1.1% during the period of January 2024 

to September 2024. The disparities in regional environmental regulations can lead to 

pollution transfer, and regional cooperation is necessary to mitigate pollution relocation 

and enhance the efficiency of government governance (Li et al., 2021).  

Consequently, a ‘regional joint prevention and control’ strategy is proposed as the 

primary governance style in the country. Under this framework, the local government 

actively promotes green innovation among heavily polluting enterprises (Zuo & Lin, 

2022) through various measures, including regulatory policies (Li & Shao, 2023) and 

government subsidies (Duan et al., 2022). The importance of atmospheric governance 

extends beyond mere air quality improvement; it is essential for transitioning China’s 

economic growth from a rough and unsustainable path to a high-quality and sustainable 

one. However, the implementation of the regional collaborative environmental 

governance has revealed several weaknesses. Despite substantial investments in 

environmental governance and air quality improvement, the effectiveness of existing 

regulatory measures and cooperative frameworks has fallen short of expectations. This 

is mainly observed in two areas: First, the lack of policy coherence among cities leads 

to conflicts of interest, resulting in varied approaches to environmental planning, 

standards, assessments and oversight, which hampers collaboration in environmental 

governance. Second, the regional prevention and control mechanisms are insufficiently 

targeted, with weak connections among city clusters, key industries, critical regions and 

substantial issues, ultimately resulting in a lack of continuity and intrinsic motivation 

for joint prevention policies (Yan et al., 2021). 

The Yangtze River Delta (YRD) is widely accepted as the pioneer region in China 

owing to its strong cooperation capabilities, rational industrial structure and rapid 

economic growth. Despite occupying only 2.3% of the nation’s total area, YRD 

contributes nearly a quarter of China’s Gross Domestic Product (GDP). However, due 

to the insufficient integration and utilisation of natural resources, YRD has suffered 

from long-term ecological damage and environmental pollution during the past decades 

(Zhou et al. 2022). With economic transformation and the strengthening of 

environmental regulations, the ecological environmental quality in the region has 

gradually improved; however, it still suffers from air pollution due to the non-optimised 

production structure of the enterprises. Along with the regional integration process in 

2019, YRD cities have made efforts to accelerate the regional joint regulation on air 

pollution, making air quality management the top priority in the YRD region (Sun et 

al. 2023; Geng et al., 2024). The Outline of the Plan for the Integrated Development of 

YRD has set clear air quality targets, including generally meeting the standards for 

average PM2.5 concentrations in cities and ensuring more than 80% of days with good 

air quality. Although the air quality in YRD has improved, the region still struggles 

with air pollution issues, particularly the ozone (O3) levels not meeting the national 

Class I air quality standards. Moreover, during the summer, fall and winter months, the 
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daily average concentrations of O3 and PM2.5 routinely exceed the acceptable limits, 

and the annual average concentrations of O3 and carbon monoxide (CO) remain higher 

than the levels in the Guangdong–Hong Kong–Macao Greater Bay Area.  

The singular air pollution regulation for one city could be confronted with the dilemma 

that the air pollutants and the pollutant emission of enterprises in its neighbouring areas 

will inevitably affect its air quality and the ineffectiveness of environmental regulation 

policies. To pursue sustainable environmental regulation effectiveness and economic 

optimisation, this study aimed to provide an accurate measurement of the effectiveness 

of inter-regional collaborative atmospheric pollution regulation on air quality 

improvement performances in YRD, with a sample data of 26 YRD cities during the 

period of 2015–2022. Specifically, the study aimed to answer the following questions 

concerning air quality improvement in YRD. First, what are the characteristics of the 

spatio-temporal distribution of atmospheric pollutants in YRD cities, and what are the 

dynamic shift features of the distribution of atmospheric pollutants within these cities? 

Second, the YRD region has proposed the Joint Prevention and Control System of 

Regional Air Pollution in 2019. What is the detailed extent of the collaborative 

atmospheric pollution regulation among YRD cities, and how has this collaborative 

regulation become involved and developed? Third, the air pollutants interact with each 

other, such as PM2.5, NO2 SO2 and O3. How can the comprehensive atmospheric 

governance performance with consideration of the dynamic change of multiple air 

pollutants be evaluated? Fourth, what are the detailed effects of the collaborative 

atmospheric pollution regulation in YRD on atmospheric governance performance? 

To elucidate the above issues, based on the sample data from 26 YRD cities during the 

period of 2015–2022, the study first employed the spatial Markov chain to illustrate the 

spatial distribution and dynamic shift characteristics of air pollutants in YRD cities, 

which aims to provide evidences on the necessity of regional collaborative atmospheric 

pollution regulation among YRD cities. Second, the study employed the social 

cooperation network approach to innovatively establish the collaborative atmospheric 

regulation network based on the texts of joint prevention and control policy for multiple 

cities, which were collected from the official website of the ecological environment 

department of each YRD city. Third, the study used the weighted entropy method to 

estimate the atmospheric governance performance with consideration of the changing 

trend of various pollutants. Finally, the study established the spatial Durbin 

econometric model to evaluate the effects of collaborative atmospheric regulation on 

atmospheric governance performance in YRD.  

The majority of research has focused on the theoretical aspects of the joint prevention 

and control regulation, whereas very few research have identified the accurate 

collaborative network and the effectiveness of the collaborative atmospheric regulation 

among YRD cities. The study innovatively established the collaborative atmospheric 

regulation network based on the text data of the joint prevention and control policy for 

multiple cities. Moreover, it employed multiple econometric approaches to realise an 

accurate evaluation of the effectiveness of collaborative atmospheric regulation on 
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atmospheric governance performance in YRD, which provides an insight into the 

collaborative regulation involvement towards sustainable environmental improvement 

for YRD and other regions. 

The remainder of this paper is organised as follows: Section 2 reviews the literature on 

air pollution, regional collaborative environmental regulation and collaborative 

governance network for atmospheric. Section 3 presents the research theoretical 

framework, research methodology and data illustration. Section 4 identifies the spatial 

distribution characteristics and regional collaborative network of atmospheric 

pollutants. Section 5 examines the detailed effects of collaborative environmental 

regulation on atmospheric governance performance in YRD. Section 6 concludes and 

provides closing remarks. 

2. LITERATURE REVIEW 

2.1 The spatial distribution identification of air pollution 

Air pollution induces significant adverse impacts on human health, including 

respiratory and cardiovascular issues, environmental quality and sustainable 

development of cities (Dominski et al., 2021; Ren et al., 2023; Zeng et al., 2021; Azimi 

& Rahman, 2024). Based on a systematic mapping review of 3401 studies regarding 

the effects of air pollution, the majority of the studies were conducted by researchers 

from institutions in China, the USA, the UK and Italy (Dominski et al., 2021). Scholars 

believed that economic development is the root cause of air pollution (Magazzino et 

al., 2022). Jiang et al. (2022) found a U-shaped relationship between economic growth 

and air pollution. The economic development has substantial spatial agglomeration 

features; thus, urban air pollution is closely associated with the air conditions of 

neighbouring cities and exerts significant spatial spill-over effects (Ge et al., 2023). 

Zhou et al. (2024) held that air pollutants, such as PM2.5 and PM10, have the important 

features of spatio-temporal transmission variations along with the changes in emission 

characteristics, atmospheric oxidising capacity, meteorological conditions and even 

economic and financial features. To realise the effective mitigation of air pollution or 

waste emissions, the majority of research have made efforts to identify the spatio-

temporal distribution of air pollution (Meng et al., 2023).  

Scholars have investigated the spatial distribution from different range levels. For 

example, Wang et al. (2018) explored the spatial distribution of air pollution in major 

cities (ECN) in Eastern China in the winter of 2015 using the data of the Ministry of 

Environmental Protection’s hourly air quality index from the Ministry of 

Environmental Protection. Four typical types of spatial distribution of air pollution were 

identified and found that the spatial distribution of air pollution was mainly related to 

the lower horizontal axial winds. Only the persistence and strengthening of 

precipitation can be accompanied by more efficient wet removal and improved air 

quality. Ding et al. (2024) focused on the detection of air pollution in smaller areas. Air 

pollution is one of the serious environmental problems in the development of high-

density cities, and the effective urban environmental monitoring technology helps 
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predict and control the air pollution emitted by the transportation sector. Based on the 

limited data of the monitoring stations, they investigated the spatial and temporal 

patterns of air pollution and their correlation mechanism with urban elements, such as 

traffic. In addition, emerging monitoring technologies have been developed, such as 

mobile monitoring (Kousis et al., 2022), air quality monitoring using drones (Järvi et 

al., 2023) and low-cost sensor monitoring using artificial intelligence (Croce and 

Tondini, 2022). Furthermore, Liu et al. (2024) analysed the spatial distribution of air 

pollution from the perspective of a certain industry. They also analysed the driving 

mechanism of the space-related network of industrial air pollution. 

2.2. Research on regional collaborative governance network  

Sun et al. (2015) found that air pollution in Chinese cities is not only the accumulation 

of air pollution in the region but also the convergence of air pollution transmission from 

neighbouring cities and other cities in the social network. Therefore, building a cross-

regional cooperative governance network based on the spatial network characteristics 

of air pollution has become the key to solving the problem of regional air pollution. 

 Scholars have identified the spatial network structure of inter-regional air pollution 

spill-over and air governance using a gravitational model. Wu (2019) used the 

‘pressure-state-response’ framework to assess urban air governance in China and the 

gravity model to map the spatial network of the governance performance of 31 

provincial capitals, demonstrating an uncooperative urban network with inherent 

limitations. Liu et al. (2021) employs the gravity model to assess the inter-city 

connections using macroeconomic data, such as aggregate indicators, geographic 

distances and population sizes. However, this approach lacks micro-level data on actual 

inter-city ties, leading the gravity model to merely outline a hypothetical city 

cooperation network. This results in a discrepancy between the model’s representation 

and the genuine inter-city network ties. Consequently, many scholars have started 

exploring the construction of environmental collaborative regulation network using the 

social cooperation network approach. Zhou (2020) analysed the collaborative 

atmospheric governance network of the YRD cluster and found that Shanghai serves as 

the leading city, whereas Hangzhou and Nanjing are substantial cooperative partners. 

Contrarily, the province of Anhui, with the exception of Ma’anshan, shows poor 

integration into this network. 

2.3 Impact of regional collaborative governance on air quality improvement 

Li et al. (2021) pointed out that the differences between regional environmental 

regulations may lead to pollution transfer and regional cooperation to reduce the 

pollution relocation and improve the efficiency of government governance. Ideally, 

under the regional collaborative governance scene, the environmental benefits could be 

maximised through resource sharing and complementary advantages (Wang et al., 

2022). Specifically, Jiang and Lyu (2021) found that regional collaborative governance 

could break down geographical administrative barriers, promote the flow of production 

factors and facilitate cooperation to expand technology spill-overs. Ge et al. (2023) used 
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difference-in-differences (DID) model based on panel data from 285 Chinese cities in 

the period of 2023–2019 and found that the regional co-treatment substantially 

contributed to the reduction of air pollution in YRD. In addition, the efficiency and 

effectiveness of collaborative environmental governance in YRD have witnessed a 

significant increase along with the intensifying regional co-integration in YRD. Sun et 

al. (2023) investigated the impact of low-carbon policies on air pollution collaborative 

governance and found that the policy helps reduce these two types of air pollution, 

thereby producing a significant collaborative governance effect. 

2.4 Literature review 

The literature has substantially enhanced our understanding of the spatial distribution 

of atmospheric pollutants and the effects of the mitigation strategies on air pollution in 

China. However, there is a noticeable gap in research regarding the detailed 

collaborative network of the collaborative environmental regulation in YRD, the 

evaluation of atmospheric governance performance and the effect of collaborative 

environmental regulation on atmospheric governance performance in YRD.  

First, it is clear that the spatial distribution of air pollutants has been extensively 

studied (Ding et al., 2024). Scholars have claimed that the air pollutants have witnessed 

significant spatial transmission among regions. Nonetheless, there is a noticeable gap 

in research concerning the spatial dynamics and transitional behaviours of these 

pollutants. The inter-regional spread of air pollution (Liu et al., 2020; Liu and Qiao, 

2021) highlights an urgent need for coordinated regional efforts in pollution mitigation. 

The accurate measurement of dynamic transmission based on shift probability features 

is of crucial importance among YRD regions. 

Second, even the cities have made efforts to implement the joint prevention and 

control policies to improve the air quality; however, the collaborative environmental 

regulation for atmospheric pollution in YRD and China is still in their infancy (Li et al., 

2022). The majority of research has focused on the theoretical aspects of these 

collaborative mechanisms, with a notable lack of empirical studies providing 

quantitative insights ( Wang et al., 2020). Accurate measurement of the development 

and involvement of the collaborative regulation state through the collaborative network 

of the joint policies among YRD cities could provide a new insight for the area. 

Finally, there has even been fewer research on the comprehensive evaluation of 

atmospheric governance performance with multiple air pollutants and the effectiveness 

of collaborative atmospheric regulation on atmospheric governance performance in 

YRD. Normally, the existing literature take the overall Joint Prevention and Control 

Plan as the treatment policy for analysis, whereas no study has focused on how the 

intensifying collaborative network of the collaborative atmospheric regulation policies 

among YRD cities stimulates the air quality improvement. The more detailed 

investigation of the intensifying collaborative network on environmental sustainability 

could be of crucial importance for the sustainable collaborative atmospheric regulation 

and environmental improvement for other regions and China. 
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3. RESEARCH DESIGN 

3.1 Research hypothesis development 

Air pollution triggers the psychological (affective, cognitive, behavioural), economic 

and social effects of air pollution beyond its physiological and environmental effects 

(Lu, 2020). Air pollutants mainly stem from industrial pollution, vehicle exhaust 

emissions and coal combustion. Scholars have identified that numerous economic 

factors indirectly contribute to environmental pollution, including industrial structure, 

economic growth and urbanisation (Zheng and Shen, 2021). Consequently, air 

pollutants tend to be concentrated in densely populated metropolitan areas, particularly 

in the larger network of cities. In this sense, the dispersion of air pollutants must account 

for the spatial structural relationships between cities (Sekula et al., 2022). Besides, the 

severity of air pollution, geographical distance, urbanisation level and industrialisation 

level in neighbouring cities are all related factors that contribute to the flow and 

variation of air pollutants among regions (Afghan et al., 2022). Overall, air pollution is 

a public good with negative externalities; it is also likely to exhibit significant positive 

spatial correlation and presents profound regional clustering features (Shen et al., 

2020). In this sense, the study proposes hypothesis 1 (H1) as follows:  

H1: Air pollutants in YRD cities exhibit a significant positive spatial 

agglomeration effect.  

Evidences are provided that the local governments cannot fundamentally solve the 

complex and severe regional air pollution problems by relying on singular common 

pollution control mechanisms, such as consultation, notification, early warning and 

linkage of air pollution information (Liu et al., 2022). YRD cities are always recognised 

as pioneers in economic development and environmental governance. With the regional 

integration process in YRD that began in 2019, multi-city cooperation in the areas of 

economy, technology and environmental governance has been strengthened and 

intensified. Realising the regional diffusion characteristics of air pollutants, the YRD 

region has implemented the Joint Prevention and Control Plan in 2019. In addition to 

the overall integration plan for YRD, the sub-level cities within the YRD, particularly 

the more developed ones, have taken the initiative to implement several integrated 

collaborative emission reduction policies to achieve more satisfactory environmental 

outcomes. In this sense, the study proposes H2 as follows:  

H2: There is intensifying collaborative network of the collaborative atmospheric 

regulation policies among YRD cities during the past years.  

Previous literature has investigated the overall Joint Prevention and Control Plan as the 

treatment policy for analysis and provided evidences that the regional collaborative 

pollution governance level will vigorously promote air quality improvement (Liu and 

Wang, 2020). Liu et al. (2022) reported that the emission reduction cost of regional 

cooperative governance is better than that of individual governance. In 2017, the cost 

of SO2 cooperative governance in the YRD decreased by about 1.8% compared with 
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that of individual governance. Ge et al. (2023) evaluated the impact of regional 

collaborative treatment on air pollution using a DID model, analysing panel data from 

285 Chinese cities from 2003 to 2019. Their findings indicated that regional co-

treatment significantly contributed to the reduction of air pollution.  

The intensifying collaborative network of the collaborative atmospheric regulation 

policies among YRD cities could be more vigorous and brings about more effective 

role in realising environmental governance performance in the YRD. In this sense, the 

study proposes H3 as follows:  

H3: The inter-regional collaborative atmospheric regulation could bring about 

significant roles in enhancing environmental governance performances in the YRD. 

3.2 Data illustration and sample description 

This study utilised the data of 26 cities in the YRD. The specific cities are listed in 

Table 1. The indicators for measuring regional cooperative governance were selected 

from the data regarding collaborative atmospheric governance among cities within the 

YRD. The data on collaborative atmospheric governance were collected from the policy 

texts on the official website of the ecological environment department of each province 

during the period of 2015–2022. 

Tab.1. Cities included in the YRD.  Source: Own research 

Provinces Cities 

Shanghai Shanghai 

Jiangsu Province 
Nanjing, Wuxi, Changzhou, Suzhou, Nantong, Yangzhou, Zhenjiang, 

Yancheng, Taizhou 

Zhejiang Province Hangzhou, Ningbo, Huzhou, Jiaxing, Shaoxing, Jinhua, Zhoushan, Taizhou 

Anhui Province Hefei, Wuhu, Maanshan, Tongling, Anqing, Chuzhou, Chizhou, Xuancheng 

The study determined keywords by searching on crucial documents, including the 

‘Three-Year Action Plan for Defending the Blue Sky’, the ‘YRD Comprehensive 

Control of Air Pollution in Autumn and Winter Action Plan’ and the ‘YRD Air 

Pollution Prevention and Control Mechanism’. By performing frequency analysis on 

these key documents pertaining to cooperative governance, this study finally 

determined eight keywords for data search: ‘cooperation’, ‘linkage’, ‘joint’, ‘joint 

control’, ‘synergy’, ‘common governance’, ‘collaboration’ and ‘hand in hand’. 

Consequently, the study used the Python web crawler technology to gather all textual 

data containing the eight aforementioned keywords from the official websites of the 

ecological environment departments in the YRD. The study specifically filtered and 

included texts related to cross-regional agreements, policies, joint actions and working 

instructions concerning atmospheric governance among cities. The study collected a 

total of 561 cooperation texts. In line with the research objectives and the principles of 

social network analysis (SNA), non-eligible texts were excluded, resulting in the 

acquisition of 147 valid inter-governmental cross-regional cooperation documents. 
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In the collaborative atmospheric governance network, the 26 prefecture-level cities in 

the YRD serve as the ‘actors’ within the social network, and the collaborative 

atmospheric governance among these cities represents the ‘relationship bond’ of the 

social network, which is gauged by the quantity of atmospheric cooperation texts. For 

the effective cooperation texts after sorting and screening, if a text mentions the 

cooperation times of multiple specific cooperation cities, a value of 1 is assigned and 

summed up. However, if it pertains to regional cooperation within a single city, it is not 

regarded as cooperation information to be incorporated into the cooperation network, 

which means that the value of the main diagonal of the collaborative atmospheric 

governance matrix is 0. Eventually, we obtained the cooperation matrix of atmospheric 

governance. Based on this matrix, we used the UCINET software to analyse the overall 

structure of the cooperation network and the characteristics of each node. Subsequently, 

we used the Ucinet software to analyse the cooperation network, specifically focusing 

on its overall structure and the characteristics of each node. 

In addition, the study collected air pollutant and other macroeconomic data from the 

China Air Quality Online Monitoring and Analysis Platform (CAQOMAP), the China 

Urban Statistical Yearbook, the statistical yearbooks of provinces and municipalities in 

the YRD and the statistical yearbooks of prefectural cities. The PM2.5 concentration 

data were obtained from the CAQOMAP, and the annual PM2.5 concentration values of 

the cities were calculated by weighting the monthly data. For certain missing data, the 

random forest method was employed to fill in the gaps. 

3.3 Research methodology 

(1) Global Moran’s I 

Global spatial autocorrelation represents a research approach that delves into the overall 

spatial clustering characteristics of various entities. It reflects the average extent of 

spatial interconnection among events and is typically gauged by the Global Moran’s I 

index. In this study, the Global Moran’s I index was selected to depict the overall 

distribution of the PM2.5 concentration, which serves as the principal indicator of air 

pollution in each city within the YRD. The value of the Global Moran’s I index ranges 

from −1 to 1. The closer the absolute value of this index is to 1, the more pronounced 

the degree of air pollution concentration in the YRD region. Conversely, when the 

absolute value is closer to 0, it implies that the air pollution in the YRD is randomly 

distributed in space. Equation (1) is presented as follows: 
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where n  is the sample size of the city; iy , the PM2.5 concentration of the city; and 

ijw , the spatial neighbourhood weight matrix representing the relationship between the 

spatial location of the city. When there is a common boundary between the city i  and 

city j , 1ijw = ; otherwise, 0ijw = . 

                  

The i is not adjacent to j

The i is adjacent to1  j

0
ijw

 
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 

，

，
                   (2) 

As the global index is only capable of reflecting the global spatial correlation 

characteristics of air pollution in the YRD and fails to disclose the local spatial 

correlation characteristics of air pollutants among different cities, the local spatial 

correlation index is introduced to measure the potentially significant regional spatial 

correlation. The formula is as follows: 
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            (3)  

If Local Moran’s I is 0 , the air pollution level of a city is spatially positively 

correlated with those of the neighbouring cities, with the air pollution showing a ‘high–

high’ or ‘low–low’ agglomeration. If the Local Moran’s I is 0 , it means that there is 

a negative spatial correlation between the air pollution of a city and that of its 

neighbours, with the air pollution showing a ‘low–high’ or ‘high–low’ agglomeration. 

(2) Markov chain 

A Markov chain is a type of stochastic process where both the state and time are 

simultaneously depicted. The state-transition probability constitutes an important 

aspect of the Markov chain. This section analyses the state transfer characteristics of 

air pollutants in the YRD through the traditional Markov chain. Its calculation formula 

is as follows: 

                             𝑃𝑖𝑗  =  
𝑛𝑖𝑗

𝑛𝑖
                              (4) 

where in  denotes the number of times that tx i=  and 
ijn  denotes the number of 

times that the PM2.5 concentration tx  of each city in the YRD shifted from i  to state 

j  under 1tx +  in the neighbouring time t  and t 1+ . Based on this, the state-transition 
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matrix is shown in Table 2 to simulate the evolution process of atmospheric pollutants 

in the YRD. 

Tab. 2. Classical Markov chain state-transition matrix. Source: Own research 

To conduct a more in-depth analysis of the mutual influence among neighbouring 

regions, the study introduces a spatial lag term based on the classical Markov chain. By 

using the nearest-neighbour 0-1 matrix between cities as the weight matrix of the spatial 

lag term, this study constructed a spatial Markov chain. By measuring the spatial 

distribution regarding the transfer of air pollutants, the study explored the probability 

and direction of the transfer of atmospheric pollutant states in the YRD under the 

context of the spatial adjacency matrix. The study provides the calculated lag values of 

each YRD city as follows: 

                              
1

b
n ij j

i j

w

n=


=                        (5) 

where 
j  denotes the value of air pollution status of neighbouring cities of city i ; n , 

the number of neighbouring cities of city i; and 
j , the air pollution state value in the 

traditional Markov chain of i ( 1ijw = ). n  is the number of cities ,
ijw  is 1 when the 

city is fixed to i .  

(3) Social network analysis 

Acknowledging that the cooperation in atmospheric governance among cities in the 

YRD can be regarded as a social network, this study used SNA to conduct quantitative 

data associated with such cooperation. The principal indicators measured by SNA in 

this study were described as follows: 

Network density measures the degree of connectivity between nodes in a network of 

nodes N and correlation lines L, which is expressed as follows: 

                            
2
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1 P11 P12 P13 P14 
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Degree centrality measures the number of connections a node has to other nodes in the 

network. A higher value indicates that the node is more influential and more closely 

associated with other nodes, which is expressed as follows (7): 

                        
1

( ) ( )
g

AD i ijj
C n x i j

−
=                        (7) 

Betweenness centrality quantifies the ratio of the count of the shortest paths traversing 

a particular node to the overall count of the shortest paths in the network. A relatively 

higher value indicates a more prominent intermediary function of the node and a more 

substantial regulatory effect within the network. This association is mathematically 

expressed as follows (8): 
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Closeness centrality measures the sum of the shortest paths from all the other nodes to 

a specific node. The shorter the distance between this node and the others, the easier it 

is to share information within a cooperative network, which is listed as follows: 
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(4) Entropy weight method 

This study employed the entropy weight method to calculate the weight of each 

indicator. It also used this method as the foundation for the comprehensive evaluation 

of the atmospheric governance performance of cities in the YRD. 

First, the extreme difference method was employed to standardise each indicator 
ijx  

in the YRD atmospheric governance performance indicator system to eliminate the 

inconsistency of different indicators in terms of scale and magnitude. For the positive 

indicators, the calculation formula is as follows: 
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where i denotes the prefecture-level cities in the YRD; j , the measurement indicator;

ijx and
ijy , the original and normalised YRD atmospheric governance performance 
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measurement indicator values, respectively; and 
maxx and 

minx , the maximum and 

minimum values of 
ijx . 

Second, the weight of the i th indicator under the j th indicator in the YRD atmospheric 

governance performance indicator system is estimated. 

Third, the information entropy of the j th indicator in the YRD atmospheric governance 

performance indicator system is calculated. 

                      
26

1
ln( )j ij iji

e k p p
=

= −                           (12) 

where the information entropy satisfies 0je   

Fourth, the coefficient of variation 
jg  of the j th indicator in the YRD atmospheric 

governance performance indicator system is calculated. 

                          
12

1

j

j

jj

g
w

g
=

=


                            (13) 

Fifth, the weighted comprehensive score of the air governance performance of each city 

in the YRD is calculated, which is expressed as follows: 

                             
12

1j j ijj
s w p

=
=                        (14) 

(5) Spatial Durbin Model 

If there are n  regions, the spatial weight W contains n n  elements and is expressed 

as follows: 

11 1

1

n

n nn

w w

W

w w

 
 

=
 
  

 

where ijw denotes the ‘distance’ between region i and j , which means different 

‘distance’ according to the research purpose. Because the main diagonal represents the 

‘distance’ between region i and itself, the value of the element iiw on the main diagonal 

is 0. According to the research content of this paper, the following spatial weight 

matrices are constructed: 

When the collaborative atmospheric governance matrix is selected as the spatial weight 

matrix, the spatial weight matrix is determined as follows: 
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ij There is a partnership between city i and city j

There is no cooperative relationship between city i and city j

x
ijw

 
=  
 

，

0，
   (15) 

The spatial Durbin model is expressed as follows:  

           

2

2.5 2.5 1 2 3

4 5 6 1 2

2

3 4 5 6

ln (ln )

ln

(ln )

PM WPM fdi GDP GDP

edu urban rain Wfdi W GDP

W GDP Wedu Wurban Wrain

   

    

    

= + + + +

+ + + + +

+ + + +

           (16)
 

1 2 3 4

1 2 3 4

performance Wperformance fdi struct urban wet

Wfdi Wstruct Wurban Wwet

    

    

= + + + +

+ + + + +
   

 (17)

 

Among them, w denotes the weight matrix of collaborative atmospheric governance 

performance, 2.5PM is explained variable; , , ,fdi struct urban wet as the explanatory 

variables;  , the regression coefficient of the explanatory variable without considering 

the spatial effect;  , the spatial autoregression coefficient of the explained variable; 

 , the spatial lag term coefficient of the explanatory variable; and  , the random 

disturbance term and 
2(0, )nI  . 

4. RESEARCH ON THE SPATIAL DISTRIBUTION CHARACTERISTICS 

AND GOVERNANCE COOPERATION NETWORK OF ATMOSPHERIC 

POLLUTANTS IN THE YRD 

This study conducted spatial autocorrelation analysis and spatial state-transition 

analysis on the primary air pollutant PM2.5 in the YRD with Global Moran’s I and 

spatial Markov chain approaches. 

4.1 Spatial aggregation characteristics of atmospheric pollutants 

(1) Global spatial autocorrelation 

This section identifies the overall spatial agglomeration characteristics of atmospheric 

pollutants via global spatial autocorrelation. Table 3 lists the results of Global Moran’s 

I. The results indicated that the Global Moran’s I of YRD cities was significantly 

positive in the period of 2015–2022. Despite slightly decreasing in 2022, the global 

Moran’s I exhibited an overall upwards tendency, indicating the prominent 

agglomeration phenomenon of the air pollution in the YRD. The PM2.5 concentration 

has a significant positive correlation among adjacent cities, and this correlation 

gradually intensifies over time. 

For cities with severe air pollution, as a result of the diffusion of air pollutants under 

the influence of air currents, these pollutants will be transmitted to neighbouring cities 

within a specific spatial range. Thus, this aggravates the air pollution situation in those 

neighbouring cities. The air quality of a city is not only contingent upon its own 
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development but is also subject to the impact of the air quality of the surrounding cities, 

which implies that there exists a ‘positive feedback’ effect in the spatial dimension. 

Tab.3. Global spatial autocorrelation value for PM2.5 concentration. Source: Own 

research 

Year I E(I) sd(I) z p-value* 

2015 0.204 -0.040 0.111 2.198 0.028 

2016 0.306 -0.040 0.109 3.173 0.002 

2017 0.361 -0.040 0.116 3.466 0.001 

2018 0.410 -0.040 0.114 3.955 0.000 

2019 0.429 -0.040 0.114 4.122 0.000 

2020 0.451 -0.040 0.113 4.329 0.000 

2021 0.472 -0.040 0.104 4.935 0.000 

2022 0.414 -0.040 0.102 4.427 0.000 

(2) Local autocorrelation analysis 

 

(2015)                       (2016) 

 

(2017)                          (2021) 

 

(2022) 

Fig. 1. Spatial distribution of PM2.5 for 26 YRD cities during the period of 2015–2022. Source: Own 

research 
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The majority of prefecture-level cities in the YRD exhibit either a ‘high–high’ or ‘low–

low’ clustering pattern, which demonstrates a positive spatial correlation in the overall 

air pollution within the entire region. Furthermore, during the period of 2015–2022, the 

number of prefecture-level cities in the YRD categorised as ‘low–low’ has been 

continuously fewer than that of cities in a ‘high’ clustering state. This tendency might 

have stemmed from the inclination of numerous YRD cities to place a higher emphasis 

on economic growth rather than environmental well-being, giving rise to competition 

and emulation among neighbouring cities. Such approaches may impede the sustainable 

routes towards high-quality economic development. 

Taking a geographical perspective, the prefecture-level cities in the YRD located within 

the ‘high–high’ and ‘low–low’ clustering areas roughly exhibit a significant difference 

between the southeast and the northwest regions. Jiaxing, Ningbo, Zhoushan, Taizhou, 

Jinhua and Shaoxing are essentially located in the ‘low–low’ clustering areas, which 

are all the cities on the southeast coast of Zhejiang Province. As the warm current of 

the Pacific Ocean can flow directly in, it can not only enhance the air quality to a certain 

extent but also prompt the surrounding cities to improve their air quality. However, 

Zhenjiang, Taizhou, Hefei, Anqing, Chuzhou, Chizhou, Tongling, Ma’anshan and 

Xuancheng, which are located in the northwest inland region, are basically situated in 

the ‘high–high’ gathering areas. Not only is their own air quality poor, but the air quality 

of the surrounding cities is also less than satisfactory. 

Moreover, the Arcgis software was used to create a heat map of the average annual 

PM2.5 concentration in the YRD from 2015 to 2022. As depicted in Figure 2, when 

combined with the analysis of the heat map and the Local Moran scatter plot, the PM2.5 

concentration in the YRD exhibits polarisation. Among them, the air pollution level in 

the southeast region is relatively low, whereas that in the northwest region is relatively 

high. The PM2.5 concentration produces a significant clustering effect in space. This 

also validates the strong transmission of PM2.5 within the YRD. Consequently, to 

address a series of ecological and environmental issues such as air pollution, it is 

evidently insufficient to rely on a single city to intensify its environmental governance 

efforts. This calls for regional cooperative governance among different regions. 
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Fig. 2. Thermodynamic map of the PM2.5 concentration in the YRD during the period of 2015–2022. Source: 

Own research 

4.2 Analysis of the state transfer characteristics of air pollutants 

(1) Identification results with classical Markov chain 

This study employed the quartile method to categorise the PM2.5 concentrations in the 

cities of the YRD into four states, namely, low concentration, lower concentration, 

higher concentration and high concentration. On this basis, the study computed the state 

transfer probabilities. 

The classical Markov chain state-transition matrix for air pollution in the YRD is 

presented in Table 4. Notably, the values along the main diagonal are significantly 

greater than those on the non-main diagonal. In other words, the probability that the air 

quality state of each city in the YRD does not change in the subsequent year is 

substantially larger than the probability that the air quality state of each city in the YRD 

will change in the following year. The smallest value on the main diagonal is 0.400, 

which implies that the probability of a prefecture-level city in the YRD maintaining its 

original air quality condition in the next year is at least 40%. 

Moreover, during the process of the state-transition of the four air quality states in the 

YRD, the values located on both sides of the main diagonal are significantly larger than 

those not adjacent to the main diagonal. In addition, the probabilities of transitioning 
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from lower to higher concentrations, higher to lower concentrations and higher to lower 

concentrations are all zero. This suggests that the probability of the air quality of YRD 

prefecture-level cities transitioning to neighbouring states during the state-transition 

process is much larger than the probability of transitioning across different levels. Also, 

the greater the state span, the smaller the probability of such a state transition occurring. 

Tab.4. Classical Markov chain transition state matrix during 2015–2023.Source: Own 

research 

(3) Identification results with spatial Markov chain 

As the previous section showed that the air pollution status of cities in the YRD is not 

spatially independent, we found that the air pollution levels in neighbouring regions 

influence one another, resulting in a substantial spill-over effect. Consequently, we 

incorporated the spatial lag term into our analysis, building upon the traditional Markov 

chain approach. 

The spatial lag order was first determined by calculating the mean PM2.5 

concentrations in neighbouring cities within the YRD. The 26 prefecture-level cities in 

the YRD were then classified into four spatial lag states using the quantile method; the 

results are presented in Table 5. 

The state-transition probability matrix on the spatial lag value is related to city i in the 

initial year, which is categorised as low concentration, lower concentration, higher 

concentration and high concentration. Then the study decomposes the traditional 

Markov chain’s 4 × 4-state matrix into four conditional state-transition probability 

matrices of order 4 × 4, as presented in Table 6. 

Tab.5. Type of spatial lag for YRD cities.   Source: Own research 

Cities  Spatial lag order Cities  Spatial lag order 

Anqing 1 Jiaxing 3 

Jinhua 1 Maanshan 3 

Ningbo 1 Shanghai 3 

Shaoxing 1 Suzhou 3 

Taizhou 1 Taizhou 3 

Tongling 1 Wuxi 3 

Zhoushan 1 Changzhou 4 

Xt\Xt+1 Low 

concentration 

Lower 

concentration 

Higher 

concentration 

High 

concentration 

Low concentration 0.8542 0.1458 0.0000 0.0000 

Lower concentration 0.3182 0.6364 0.0455 0.0000 

Higher concentration 0.0508 0.3559 0.5593 0.0339 

High concentration 0.0000 0.0175 0.4035 0.5789 
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Chizhou 2 Chuzhou 4 

Hangzhou 2 Hefei 4 

Huzhou 2 Nanjing 4 

Nantong 2 Yancheng 4 

Wuhu 2 Yangzhou 4 

Xuancheng 2 Zhenjiang 4 

 

Tab. 6. State transferring matrices for spatial Markov chain. Source: Own research 

Spatial lag state Xt\Xt+1 1 2 3 4 

 

1 

1 P11/1 P12/1 P13/1 P14/1 

2 P21/1 P22/1 P23/1 P24/1 

3 P31/1 P32/1 P33/1 P34/1 

4 P41/1 P42/1 P43/1 P44/1 

… … … … … … 

 

4 

1 P11/4 P12/4 P13/4 P14/4 

2 P21/4 P22/4 P23/4 P24/4 

3 P31/4 P32/4 P33/4 P34/4 

4 P41/4 P42/4 P43/4 P44/4 

By using these matrices, the study provides the classical Markov state-transition matrix 

for each spatial lag type and then obtains the spatial Markov chain state-transition 

matrix. Table 7 presents the results regarding the transferring matrix for air pollution in 

the YRD. Notably, substantial differences were observed in the state-transition 

probabilities of air quality among prefecture-level cities in the YRD under different 

spatial lag states. The cities in the low-, lower- and higher-concentration lag states have 

a high likelihood of downwards transition in the PM2.5 concentration and a low 

likelihood of upwards transition. Contrarily, the cities in the high-concentration lag 

state show a low probability of downwards transitions and a high probability of upwards 

transitions. This implies that the air quality conditions of neighbouring cities in the 

YRD affect the air quality transitions of individual cities. 

 

Tab.7. Transferring matrix for air pollution in the YRD during 2015–2023.  

Spatial lag state Xt\Xt+1 
Low 

concentration 

Lower 

concentration 

Higher 

concentration 

High 

concentration 

Low concentratio 

Low 0.8824 0.1176 0.0000 0.0000 

Lower 0.1250 0.7500 0.1250 0.0000 

Higher 0.0000 0.0000 0.0000 0.0000 

High 0.0000 0.0000 0.0000 0.0000 

Lower 

concentration 

Low 0.6250 0.3750 0.0000 0.0000 

Lower 0.3571 0.6429 0.0000 0.0000 

Higher 0.3000 0.5000 0.2000 0.0000 
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High 0.0000 0.0000 0.0000 0.0000 

Higher 

concentration 

Low 1.0000 0.0000 0.0000 0.0000 

Lower 0.5000 0.5000 0.0000 0.0000 

Higher 0.0000 0.3590 0.6154 0.0256 

High 0.0000 0.1250 0.6250 0.2500 

High 

concentration 

Low 1.0000 0.0000 0.0000 0.0000 

Lower 0.2500 0.5000 0.2500 0.0000 

Higher 0.0000 0.2000 0.7000 0.1000 

High 0.0000 0.0000 0.3673 0.6327 

Source: Own research 

4.3 Collaborative atmospheric governance network in the YRD 

(1) Measurement of overall indicators for collaborative atmospheric governance 

Network density is a crucial indicator used to depict the overall structural pattern of 

social networks. The value range of network density lies between 0 and 1. The closer it 

gets to 1, the more seamless the information flow and the more frequent the cooperative 

actions among the nodes within the network. Conversely, the closer it gets to 0, the less 

smooth the information flow between the nodes in the network and the more estranged 

the cooperative relationship. 

Tab. 8. Density of collaborative atmospheric governance in YRD during 2015-2022 

Year 2015 2016 2017 2018 2019 2020 2021 2022 

Network density 0.1477 0.2000 0.1877 0.2492 0.4185 0.4523 0.4769 0.4923 

Source: own research 

Table 8 shows the density of the atmospheric governance network in the YRD, 

indicating that with the exception of a slight decline in the density of collaborative 

atmospheric governance in 2017, the density of such cooperation in the YRD has 

exhibited on an upwards trend and the rate of increase has grown. The cooperation 

density in 2019 showed an 83.3% growth compared with that in 2015, indicating that 

the cross-border cooperation in atmospheric governance among cities is becoming 

increasingly closer. The density of collaborative atmospheric governance exhibited a 

steady upwards trend from 2020 to 2022. Although the current network structure is not 

yet stable enough and the cooperation density had not reached 0.5 by 2022, the overall 

trend is showing improvement. 

By employing condensed subgroup analysis to map out the collaborative atmospheric 

governance network in the YRD, it becomes feasible to more distinctly identify the core 

and peripheral cities involved in collaborative atmospheric governance, along with the 

cooperation relationships and the degree of closeness between each city. Among them, 

the core degree of the urban cooperation status is represented by the size of a square. 

While the degree of cooperation is illustrated by the thickness of lines. The visualisation 

results are shown in Figure 3. 
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Fig. 3. Cooperation network for atmospheric governance in the YRD. Source: Own research 

 

(2) Measurement of individual indicators for collaborative atmospheric governance  

Degree centrality indicates the cooperation capacity of cities in the YRD within the 

collaborative atmospheric governance network. The greater the degree centrality of a 

city, the more closely it is associated with other cities in the collaborative atmospheric 

governance network and the more central the city’s position is within the cooperation 

network. The measurement outcomes are shown in Table 9. 

Based on the results, Suzhou, Jiaxing, Nanjing, Shanghai and Wuxi show the highest 

degree centrality, thus being identified as the core cities for cooperation. As provincial 

capitals and municipalities directly under the central government, Nanjing and 

Shanghai hold significant influence and allure. Furthermore, they are endowed with 

abundant human, material and financial resources, which empower them to effectively 

tackle environmental pollution. This robust resource foundation underpins their core 

positions in the collaborative atmospheric governance. It is also apparent that the cities 

surrounding Taihu Lake as well as those within the Nanjing Metropolitan Circle and 

the Hangzhou Metropolitan Circle maintain close cooperative ties. The geographical 

proximity among Shanghai, Jiaxing and Huzhou promotes frequent cross-border 

cooperation among these three cities. Contrarily, the overall cooperative ability of cities 

in Anhui Province is relatively weak. Ma’anshan exhibits the highest degree centrality 

within Anhui, yet with a score of only 39. This implies a peripheral overall position for 

Anhui Province within the atmospheric governance network.  
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Tab.9. Degree centrality of collaborative atmospheric governance during 2015–2022.  

City Degree centrality City Degree centrality 

Suzhou 176 Wuhu 55 

Jiaxing 147 Chuzhou 53 

Nanjing 123 Nantong 51 

Shanghai 118 Xuancheng 39 

Wuxi 101 Jinhua 36 

Hangzhou 94 Anqing 33 

Changzhou 94 Ningbo 33 

Huzhou 87 Hefei 32 

Zhenjiang 77 Chizhou 31 

Taizhou 74 Taizhou 23 

Yangzhou 63 Tongling 23 

Shaoxing 62 Yancheng 17 

Maanshan 55 Zhoushan 9 

Source: own research 

Interestingly, Yancheng and Zhoushan in Zhejiang Province rank last in the YRD in 

terms of degree centrality, despite having some of the finest air quality in the region. 

This circumstance might arise from their favourable climate and geographical 

conditions, which lead to good air quality. Consequently, they may not have made 

substantial investments in collaborative atmospheric governance. Betweenness 

centrality emphasises the regulatory capacity among different cities within the YRD 

and other prefecture-level cities. A city’s betweenness centrality is directly correlated 

with its level of control over cooperative resources in the atmospheric governance 

network. Most cities with higher betweenness centrality play a mediating role in the 

cooperation network, as shown in Table 9. 

The outcomes suggest that among the 26 YRD cities, Hangzhou demonstrates the 

highest betweenness centrality. As the capital city of Zhejiang Province, Hangzhou 

holds a crucial position within the cooperation network. This position indicates a strong 

ability to manage cooperation resources and highlights its role as a connecting bridge 

in the atmospheric governance collaboration within the YRD. Xuancheng ranks second 

in terms of betweenness centrality and shares boundaries with Nanjing, Wuxi, 

Changzhou, Hangzhou, Huzhou, Wuhu, Ma’anshan and Chizhou. This geographical 

connectedness increases the probability of resource sharing via Xuancheng, leading to 

a relatively stronger capacity for resource control. However, Xuancheng does not hold 

an absolute core position in the collaborative atmospheric governance network, which 

indicates that its efficiency in resource utilisation needs to be improved. Shanghai, 

despite having a high degree of centrality, surprisingly shows a low resource control 

capability. This reflects that although it acts as a central element within the cooperative 

network, its effectiveness in handling cooperative resources is rather limited. 

Contrarily, Taizhou, Zhoushan, Tongling and Chizhou exhibit extremely low 
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betweenness centrality, indicating their peripheral status within the cooperation 

network. As a result, these cities have restricted cooperation and control capabilities. 

Closeness centrality measures the sum of the shortest distances between prefecture-

level cities in the YRD and other prefecture-level cities. It reflects the capacity of each 

prefecture-level city in the YRD to be independent within the collaborative atmospheric 

governance network. The closer the prefecture-level cities are to other prefecture-level 

cities, the less they depend on them. Conversely, the farther they are from other central 

cities, the fewer cooperation benefits they obtain. Table 10 shows the measurement 

results of betweenness centrality. 

Tab. 10. Betweenness centrality of collaborative atmospheric governance during 

2015–2022.  

City Betweenness centrality City Betweenness centrality 

Hangzhou 102.567 Yangzhou 11.515 

Xuancheng 89.075 Jinhua 10.5 

Wuhu 57.271 Nantong 9.941 

Shaoxing 53.5 Wuxi 9.591 

Nanjing 41.619 Maanshan 9.1 

Huzhou 26.048 Zhenjiang 6.967 

Hefei 25.145 Chuzhou 5.376 

Shanghai 24.315 Anqing 4.667 

Ningbo 24 Yancheng 2.25 

Suzhou 19.741 Taizhou 1 

Jiaxing 18.286 Tongling 0 

Taizhou 18.215 Chizhou 0 

Changzhou 17.31 Zhoushan 0 

Source: own research 

Tab. 11. Closeness centrality of collaborative atmospheric governance during 2015–

2022.  

City Closeness Centrality City Closeness Centrality 

Xuancheng 49.02 Zhenjiang 37.31 

Nanjing 44.64 Taizhou 37.31 

Hangzhou 43.86 Chuzhou 36.77 

Huzhou 43.86 Nantong 35.71 

Wuhu 43.10 Shaoxing 33.78 

Maanshan 41.67 Anqing 33.78 

Changzhou 41.67 Jinhua 32.89 

Suzhou 40.32 Yancheng 31.65 

Shanghai 40.32 Chizhou 31.25 

Jaixing 39.68 Tongling 31.25 

Wuxi 39.06 Taizhou 26.32 

Hefei 37.88 Ningbo 26.32 

Yangzhou 37.88 Zhoushan 21.01 

Source: own research 
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According to the estimated results, Xuancheng, Nanjing, Hangzhou and Huzhou 

display higher closeness centrality. Notably, Nanjing and Hangzhou are the capital 

cities of Jiangsu Province and Zhejiang Province, respectively, whereas Xuancheng and 

Huzhou are located close to many cities in the YRD. These geographical locations 

endow them with advantages in information sharing, enabling them to reap greater 

benefits from the cooperation network. Contrarily, Anqing, Tongling and Chizhou in 

Anhui Province have lower closeness centrality. This can be attributed to their restricted 

control over cooperative resources and their relatively feeble capacity for collaborative 

atmospheric governance. Likewise, Ningbo, Taizhou and Zhoushan in Zhejiang 

Province exhibit lower closeness centrality, which might be affected by geographical 

factors. However, the air quality in these cities is generally good, leading to a lower 

demand for cooperative resources. 

5. EFFECTIVENESS IDENTIFICATION OF COLLABORATIVE 

ENVIRONMENTAL REGULATION IN YRD 

5.1. comprehensive evaluation of atmospheric governance performance 

(1) Indicator illustration of atmospheric governance performance 

According to the pressure state response (PSR) (Peng et al., 2020; Fu et al., 2022) and 

taking into account the rationality of indicators, data availability and the atmospheric 

governance process in the YRD, this study developed a three-level atmospheric 

governance performance indicator system. Table 12 lists the specific indicators of the 

evaluation index system for atmospheric governance performance.  

 

Tab.12. Evaluation index system for atmospheric governance performance. 
First-level 

index 

Second-level 

index 

Indicator illustration Unit of measurement 

Evaluation 

index system 

for 

atmospheric 

governance 

performance 

in the YRD 

Pressure 

indicators 

Status 

indicators 

Response 

indicators 

Criterion layer 

Industrial sulphur dioxide emissions 

per unit of GDP 
Tons/million yuan 

Industrial nitrogen oxide emissions 

per unit of GDP 
Tons/million yuan 

Industrial smoke (powder) dust 

emissions per unit of GDP 
Tons/million yuan 

Industrial wastewater discharge per 

unit of GDP 
10000 tons/million yuan 

Pressure 

indicators 

Status 

indicators 

Response 

indicators 

Criterion layer 

Concentration of fine particulate 

matter (PM2.5) 

Micrograms/cubic metre 

Nitrogen dioxide concentration Micrograms/cubic metre 

Sulphur dioxide concentration Micrograms/cubic metre 

Inhalable particulate matter (PM10) 

concentration 

Micrograms/cubic metre 

Pressure 

indicators 

Comprehensive utilisation rate of 

general industrial solid waste 
% 

Centralised treatment rate of sewage 

treatment plant 
% 
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Harmless treatment rate of 

household waste 
% 

Green coverage rate in built-up areas % 

Source: Own research 

The PSR model is used to assess atmospheric governance performance by examining 

the pressure of pollutants on air quality, the state of the atmosphere and the response to 

air pollution. Industrial emissions such as sulphur dioxide and nitrogen oxide negatively 

impact air quality, with higher emissions per GDP indicating higher pressure. State 

indicators, such as PM2.5, PM10, nitrogen dioxide and sulphur dioxide levels, reflect 

air quality, with higher values indicating poorer conditions. Response indicators 

measure government and enterprise actions, including sewage treatment and waste 

management rates, with higher values indicating more effective governance. The model 

aligns with the process of atmospheric governance, making it a rational approach for 

evaluating performance in different cities within the YRD. The indexes are selected 

based on related literatures concerning atmospheric governance performance (Zhou et 

al., 2022;  Zhou et al., 2024；Sun et al, 2023).  

(2) Evaluation of atmospheric governance performance 

The measurement results of atmospheric governance performance are shown in Table 

13. Overall, the atmospheric governance performance of the YRD is generally 

improving, with most cities demonstrating a fluctuating upwards trend between 2015 

and 2022. 

Tab. 13. Air governance performance evaluation for YRD during 2015- 2022. 

City 2015 2016 2017 2018 2019 2020 2021 2022 Mean value 

Shanghai 0.369  0.445  0.518  0.566  0.568  0.559  0.565  0.587  0.522 

Nanjing 0.364  0.437  0.487  0.542  0.555  0.623  0.659  0.681  0.544 

Wuxi 0.409  0.457  0.487  0.532  0.557  0.637  0.673  0.715  0.558 

Changzhou 0.411  0.480  0.505  0.531  0.546  0.586  0.622  0.648  0.541 

Suzhou 0.361  0.399  0.464  0.496  0.537  0.611  0.628  0.662  0.520 

Nantong 0.490  0.536  0.576  0.616  0.634  0.672  0.686  0.704  0.614 

yancheng 0.470  0.510  0.536  0.599  0.626  0.695  0.737  0.757  0.616 

Yangzhou 0.462  0.512  0.491  0.555  0.586  0.637  0.653  0.673  0.571 

Zhenjiang 0.456  0.478  0.497  0.584  0.581  0.640  0.650  0.668  0.569 

Taizhou 0.382  0.444  0.508  0.571  0.593  0.661  0.687  0.721  0.571 

Hangzhou 0.430  0.476  0.485  0.546  0.564  0.657  0.639  0.683  0.560 

Ningbo 0.432  0.506  0.532  0.599  0.601  0.662  0.672  0.682  0.586 

Jiaxing 0.507  0.574  0.513  0.559  0.583  0.639  0.613  0.636  0.578 

Huzhou 0.599  0.635  0.634  0.671  0.680  0.710  0.693  0.696  0.665 

Shaoxing 0.465  0.553  0.544  0.609  0.621  0.669  0.657  0.679  0.600 

Jinhua 0.478  0.550  0.581  0.621  0.625  0.656  0.664  0.676  0.606 

Zhoushan 0.572  0.626  0.663  0.690  0.695  0.778  0.777  0.795  0.699 

Taizhou 0.604  0.635  0.751  0.698  0.715  0.724  0.711  0.744  0.698 

Hefei 0.477  0.459  0.514  0.596  0.600  0.644  0.691  0.731  0.589 

Wuhu 0.432  0.481  0.477  0.541  0.565  0.597  0.679  0.681  0.557 

Maanshan 0.467  0.522  0.507  0.552  0.570  0.625  0.620  0.628  0.561 
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tongling 0.460  0.534  0.548  0.586  0.507  0.620  0.596  0.614  0.558 

Anqing 0.530  0.538  0.554  0.591  0.588  0.571  0.673  0.676  0.590 

Chuzhou 0.483  0.470  0.524  0.580  0.667  0.701  0.751  0.841  0.627 

chizhou 0.570  0.543  0.534  0.622  0.646  0.709  0.706  0.738  0.634 

Xuancheng 0.507  0.518  0.543  0.610  0.616  0.682  0.723  0.740  0.617 

Source: Own research 

YRD has shown high environmental governance performance, averaging over 0.5 for 

8 years, supporting economic growth and ecological improvements. Shanghai and 

Zhejiang’s close cooperation has led to substantial regional governance achievements, 

particularly in Zhoushan and Taizhou, which excel in atmospheric governance despite 

their low participation in collaborative networks. 

Jiangsu and Anhui lag slightly behind Zhejiang in atmospheric governance. Jiangsu’s 

Nantong and Yancheng have an average score of 0.6, whereas core YRD cities such as 

Nanjing, Suzhou and Yangzhou score around 0.5, indicating a need for these cities to 

balance local improvements with regional cooperation to prevent declines in 

atmospheric governance efficiency. 

Anhui’s Tongling and Wuhu also show low atmospheric governance performance, 

suggesting that Xuancheng needs to expedite the development of an efficient, high-

quality environmentally friendly society. As a key city in the regional governance 

network, Xuancheng must enhance its cooperative governance efficiency and resource 

utilisation. Ma’anshan, the first in Anhui to implement digital environmental 

governance, has an average score of 0.561 over 5 years. Despite the rapid growth from 

2019 to 2022, Ma’anshan’s governance efficiency requires further enhancement, 

particularly with the rapid economic digitalisation, highlighting the importance of 

improving environmental governance efficiency. 

5.2.  Effectiveness identification of collaborative atmospheric regulation  

(1) Variable illustration for the effectiveness identification 

To measure the effectiveness of collaborative atmospheric regulation, Table 14 presents 

the explanatory variables and explained variables according to the impact features of 

collaborative atmospheric regulation, the influencing factors of air quality improvement 

and atmospheric governance performance improvement. The study not only focuses on 

the single air quality improvement through PM2.5 but also emphasises the 

comprehensive governance performance for analysis.  

Tab. 14. List of explanatory variables and explained variables 

Variable 
Variable 

abbreviation 
Variable illustration Variable source 

Air quality PM2.5 
The annual average concentration of 

PM2.5 in the YRD cities  

China’s air quality 

online monitoring 

and analysis 

platform 
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Atmospheric 

governance 

performance 

Performance 
The atmospheric governance 

performance of the YRD cities  

China’s air quality 

online monitoring 

and analysis 

platform 

Foreign direct 

investment 
fdi 

The ratio of the amount of foreign 

direct investment and the number of 

foreign investment projects to 

represent the foreign capital 

The Statistical 

Yearbook of 

Chinese Cities 

Economic 

development level 

lnGDP, 
2(ln )GDP  

The logarithm of per capital GDP 

and its square to measure the level 

of economic development 

The Statistical 

Yearbook of 

Chinese Cities 

Industrial structure 

adjustment 
struct 

The ratio of the GDP of the 

secondary industry to the tertiary 

industry  

The Statistical 

Yearbook of 

Chinese Cities 

educational 

expenditure 
educt 

The proportion of education 

expenditure in local general public 

expenditure 

The Statistical 

Yearbook of 

Chinese Cities 

Urbanisation level urban 
The ratio of the urban population to 

the total population for the YRD city 

The National 

Bureau of 

Statistics and the 

municipal Bureau 

of Statistics 

Precipitation rain The rain volume  

China surface 

climate data daily 

value data set 

Humidity wet The air humidity  

China surface 

climate data daily 

value data set 

Source: Own research 

(2) Identification of air quality improvement  

Tab.15. Estimation results of factors influencing air quality improvement.  
 (1) (2) (3) (4) (5) (6) 

VARIABLES Spatial Main Wx Direct Indirect Total 

  0.595*
** 

     

 (0.00)      

lnGDP  61.220* 67.378 86.588** 228.066* 314.654** 

  (0.09) (0.30) (0.03) (0.08) (0.03) 

lnGDP2  -2.871* -3.063 -4.041** -10.474* -14.515** 

  (0.09) (0.30) (0.02) (0.07) (0.02) 

urban  -
34.364**

* 

-
50.896*

* 

-
50.041**

* 

-
159.447**

* 

-
209.488**

* 
  (0.01) (0.01) (0.00) (0.00) (0.00) 

edu  23.869 -
75.710*

* 

8.791 -142.167* -133.376 

  (0.24) (0.05) (0.70) (0.09) (0.18) 

struct  5.520** -
8.503** 

4.371* -11.419 -7.048 

  (0.01) (0.04) (0.07) (0.21) (0.51) 
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rain  -0.001 0.001 -0.000 0.001 0.000 

  (0.73) (0.73) (0.80) (0.87) (0.96) 

fdi  -17.129 -9.487 -21.253 -39.668 -60.922 

  (0.49) (0.80) (0.43) (0.61) (0.49) 

Observations 208 208 208 208 208 208 

Number of 
cities 

26 26 26 26 26 26 

 *** p<0.01, ** p<0.05, * p<0.1. Source: Own research.  

Table 15 presents the estimation results of factors influencing air quality improvement 

in YRD cities. The LM test was employed to determine the suitability of the spatial 

error model or the spatial lag model for the empirical analysis in this study. However, 

it was deemed inappropriate for the selection between the spatial Durbin model, the 

spatial error model and the spatial lag model. The spatial Durbin model was selected as 

the reference, and its applicability, along with the other two models, was assessed using 

maximum likelihood estimation and the likelihood ratio test. Neither the spatial error 

model nor the spatial lag model’s spatial terms passed the significance test. In this sense, 

the study adopted the spatial Durbin model for analysis. 

The model’s estimated results indicated a significant positive autocorrelation 

coefficient for air quality at 0.595, suggesting a strong positive correlation between the 

PM2.5 concentrations in cities engaged in collaborative atmospheric governance. This 

implies that the air pollution in one YRD city exacerbates the pollution in others. The 

impact of economic development level on air quality followed an inverted U-shaped 

curve, aligning with the environmental Kuznets curve, indicating that economic growth 

can improve air pollution to some extent as the economy develops. Urbanisation had a 

significant negative impact on air quality, suggesting that the concentration of resources 

in urbanisation improves environmental governance efficiency and air quality. The 

spatial term of urbanisation also had a significant negative impact, indicating that 

urbanisation improvements in surrounding cooperative cities can substantially improve 

air quality. 

Educational expenditure had a significant negative coefficient of −75.71 at significant 

level of 5%, indicating that increased educational spending can slow down air pollution 

in related cities through environmental governance cooperation, potentially enhancing 

environmental awareness and air quality. In summary, the spatial Durbin model was 

found to be the most suitable for analysis, and factors such as economic development, 

urbanisation and educational expenditure considerably influence air quality in the YRD, 

with urbanisation and educational expenditure showing potential for air quality 

improvement through cooperative governance. 

Furthermore, analysis of the spatial Durbin model revealed that the total effect on air 

quality is decomposed into direct and indirect (spatial spill-over) effects. Direct effects, 

which are the local impacts of air quality factors, such as industrial structure, economic 

development and urbanisation, indicate that economic development has the most 

significant influence, with a coefficient of 86.588, highlighting its crucial role in air 
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environment improvement. The indirect effects demonstrate that factors in cooperating 

cities, such as economic development, urbanisation and educational expenditure, 

substantially influence a city’s air pollutant concentrations. The combined total effect 

of economic development is 314.654, significant at the 5% level, whereas the total 

effect of urbanisation is significantly negative at the 1% level, indicating that the 

acceleration of urbanisation contributes to better air quality in the YRD. 

Table 16 provides the analysis results for YRD provinces. It shows distinct dynamics 

in air quality and its determinants. In Zhejiang, the spatial lag term coefficient of the 

PM2.5 concentration is 0.52, suggesting that Zhejiang’s air quality is influenced by 

cooperative cities. Zhejiang’s economic development level has a significantly negative 

spatial lag term coefficient, indicating a transition to high-quality development where 

economic growth improves air quality rather than exacerbating ecological deterioration. 

Urbanisation in Zhejiang also has a significantly negative impact, implying that 

urbanisation improvements can enhance air quality, and the same is true for surrounding 

cooperative cities. 

In Jiangsu, educational expenditure has a positive coefficient of 63.102, potentially 

worsening air pollution, but the negative spatial lag term coefficient of −229.139 

indicates that increased educational spending in cooperating cities can alleviate the 

city’s environmental pollution. Urbanisation in Jiangsu also has a significantly negative 

spatial lag term, suggesting that urbanisation improvements in neighbouring 

cooperative cities can reduce a city’s environmental pollution. 

 

Tab.16. Estimation results of factors influencing air quality improvements in three 

provinces.  

 Zhejiang  Jiangsu  Anhui 

  0.502*** 0.242* 0.369*** 

 (0.00) (0.06) (0.00) 

𝑓𝑑𝑖 -18.618 -13.640 -88.844 

 (0.73) (0.89) (0.14) 

𝑙𝑛𝐺𝐷𝑃 -162.724* 284.173** 171.066* 

 (0.09) (0.03) (0.09) 
2(ln )GDP  7.012* -12.823** -8.335* 

 (0.09) (0.02) (0.08) 

𝑒𝑑𝑢 58.447** 63.102** -18.103 

 (0.03) (0.02) (0.73) 

𝑢𝑟𝑏𝑎𝑛 -73.962*** 18.131 -92.278** 

 (0.00) (0.19) (0.01) 

𝑟𝑎𝑖𝑛 -0.004* 0.000 -0.006 

 (0.10) (0.83) (0.33) 

𝑊 ∙ 𝑓𝑑𝑖 -162.647* -117.218 64.746 

 (0.06) (0.54) (0.39) 

𝑊 ∙ 𝑙𝑛𝐺𝐷𝑃 -675.513** -104.042 38.336 
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 (0.01) (0.68) (0.82) 
2(ln )W GDP  29.142** 3.742 -1.930 

 (0.01) (0.73) (0.80) 

𝑊 ∙ 𝑒𝑑𝑢 6.374 -229.139*** -69.471 

 (0.89) (0.00) (0.46) 

𝑊 ∙ 𝑢𝑟𝑏𝑎𝑛 -76.510*** -132.885*** 26.597 

 (0.01) (0.00) (0.62) 

𝑊 ∙ 𝑟𝑎𝑖𝑛 0.002 -0.004 0.006 

 (0.41) (0.24) (0.46) 

Observations 64 72 64 

Number of 

cities 
8 9 8 

 *** p<0.01, ** p<0.05, * p<0.1. Source: Own research.  

Anhui presents a different picture with urbanisation, where the coefficient is 

significantly negative but the spatial lag term is significantly positive. This indicates 

that while urbanisation improvements in Anhui enhance air quality, similar 

improvements in surrounding cooperative cities increase the city’s air pollution, 

reflecting an irrational urbanisation structure. Anhui’s economic development level 

coefficient is 171.066, with a quadratic term coefficient of −8.335, indicating that 

economic development initially worsens air pollution but that attention to the ecological 

environment strengthens over time, leading to environmental protection becoming a 

priority in economic development. 

(3) Identification of atmospheric governance performance 

(4)  

Tab.17– Estimation results of atmospheric governance performance improvement. 

 (1) (2) (3) (4) (5) (6) 

VARIABLES Spatial Main Wx Direct Indirect Total 

  0.395***

(0.00) 

     

fdi  -0.427 

(0.15) 

0.576 

(0.20) 

-0.365 

(0.22) 

0.616 

(0.31) 

0.251 

(0.71) 

urban  0.354**

(0.01) 

1.149*** 

(0.00) 

0.512*** 

(0.00) 

1.987*** 

(0.00) 

2.499*** 

(0.00) 

struct  0.009 

(0.70) 

0.078** 

(0.04) 

0.022 

(0.32) 

0.125** 

(0.02) 

0.147** 

(0.01) 

wet  0.000 

(0.31) 

-

0.000***(

0.00) 

0.000 

(0.58) 

-0.000*** 

(0.00) 

-

0.000***(

0.00) 
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Observations 208 208 208 208 208 208 

Number of city 26 26 26 26 26 26 

*** p<0.01, ** p<0.05, * p<0.1. Source: Own research.  

Table 17 presents the identification results of enhancing atmospheric governance 

performance through regional cooperative governance with the spatial Durbin model. 

The model’s estimated results, as shown in Model (1), indicate a significant positive 

correlation between atmospheric governance cooperation and performance, with a 

spatial lag coefficient of 0.395 at the 1% significance level. This suggests that 

improvements in a city’s atmospheric governance can substantially influence and 

improve the performance of surrounding cooperative cities. The spatial lag term of the 

industrial structure is 0.078, significant at the 5% level, indicating that industrial 

cooperation among surrounding cities enhances a city’s atmospheric governance 

performance. Its urbanisation and spatial lag terms have significantly positive estimated 

coefficients, implying that urbanisation in local and surrounding cities contributes to 

better atmospheric governance performance. In addition, the study found that the 

introduction of foreign capital into cities exacerbates air pollution, suggesting that it is 

detrimental to atmospheric governance. This calls for strategies to either reduce foreign 

capital inflow or increase environmental standards to raise the entry bar for foreign 

enterprises, thereby improving the overall atmospheric governance performance. 

6 . CONCLUSIONS AND SUGGESTIONS 

6.1. Conclusions 

Based on the sample data from 26 YRD cities during the period of 2015–2022, this 

study employed a series of statistical and econometric methods, including spatial 

Markov chain, social cooperation network, weighted entropy method and spatial 

Durbin econometric model, to measure the dynamic inter-regional distribution shifts of 

air pollutants in the YRD, the collaborative network involvement of the regional 

atmospheric collaborative governance and the effectiveness of regional atmospheric 

collaborative governance on atmospheric governance performance. The conclusions of 

this study are as follows:  

The spatial Markov chain identification validates a strong positive correlation and 

cross-border diffusion features among air pollutants across different locations within 

the YRD cities. Southeastern coastal cities have better air quality and positively 

influence their surroundings, whereas northwestern inland cities suffer from poor air 

quality owing to natural conditions and negatively affect neighbours.  

The collaborative network structure of the collaborative regulation in the YRD remains 

unstable, with the cooperation density staying at a low level despite a notable annual 

increasing trend in the collaborative intensity during the period of 2015–2022. The 

collaborative network structure shows Shanghai, Zhejiang and Jiangsu located at the 
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centrality in the collaborative network and Anhui on the margin with weaker 

collaboration in the collaborative environmental regulation.  

The air quality and atmospheric governance performance in the YRD exert significant 

positive spill-over effects. In addition, the air quality and the atmospheric governance 

performance have greatly improved, and the effectiveness of regional atmospheric 

collaborative governance on atmospheric governance performance holds true, with the 

effects being more obvious in cities with more developed urbanisation and economy.  

Overall, our study highlights the importance of regional cooperation in atmospheric 

governance and identifies the key factors influencing air quality and governance 

performance in the YRD, which provides an important reference for the collaborative 

environmental regulation in other regions and overall China to achieve effective air 

pollution control and economic growth. 

6.2. Policy suggestions  

The study proposes the following suggestions to enhance regional atmospheric 

governance based on our main findings: 

First, given the strong positive correlation and cross-border diffusion of air pollutants, 

there is a need for a more robust and stable collaborative network. Furthermore, the 

cooperation density needs to be increased and all provinces, including Anhui, should 

be involved more centrally in the network to balance regional efforts. 

Second, recognising the differences in air quality between southeastern coastal and 

northwestern inland cities, it is imperative to implement tailored strategies for different 

regions. The YRD cities should develop region-specific strategies that address the 

unique challenges posed by natural conditions and existing infrastructure. 

Third, as urbanisation and economic development have significant positive spill-over 

effects on air quality and governance performance, policies should be designed to 

leverage these factors. Furthermore, the YRD cities should be encouraged to implement 

urban planning that considers environmental impact and supports sustainable economic 

practices 

Fourth, it is important to increase public awareness about air pollution and encourage 

participation in environmental protection. This can help in garnering support for 

environmental policies and in implementing community-level solutions. The 

governments should also constantly invest in clean technology and innovation to reduce 

emissions, which could fundamentally provide the solution of collaborative 

environmental regulation.  
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