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Abstract 

This study creates a resilient and sustainable supply chain framework for perishable goods that 

harmonizes economic, environmental, and social goals. By tackling the intricacies associated 

with multi-tiered, multi-product, and multi-temporal systems, the study enhances supply chain 

efficiency in the face of uncertainty. The primary goal is to reduce costs, minimize 

environmental impacts, and improve service levels, while incorporating the unique 

characteristics of the dairy and pharmaceutical industries. The study utilizes a multi-objective 

mixed-integer linear programming framework to enhance the sustainability of a supply chain 

dedicated to perishable goods in the face of uncertainty. The model is validated using 

experimental data, solved with GAMS software and CPLEX solver, and further analyzed 

through the NSGA-II meta-heuristic algorithm and a modified epsilon constraint method. 

Comparative evaluations assess the performance and efficiency of these optimization 

techniques, highlighting their applicability in diverse supply chain scenarios. The study 

demonstrates that the NSGA-II algorithm outperforms the modified epsilon constraint 

algorithm in handling large-scale supply chain optimization problems, offering faster 

computation and more diverse Pareto-optimal solutions. Conversely, the epsilon constraint 

method provides greater precision and accuracy for smaller, less complex problems. The 

proposed models effectively balance economic, environmental, and social objectives, 

showcasing their applicability in designing sustainable and robust supply chains for perishable 

products under uncertainty. 
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1 INTRODUCTION: In an increasingly interconnected global economy, supply chains are 

pivotal for sustaining commerce and fulfilling consumer demand (Sahebi et al., 2024). Supply 

chains are not just logistical frameworks; they serve as the backbone of industries that deliver 

critical goods, including perishable items like food, dairy, medications, and blood-related 

products. As these products are highly sensitive to time and environmental conditions, their 

supply chain management requires precise planning and execution. With a growing population 

and heightened consumer expectations, ensuring the availability and quality of such products 

has become a formidable challenge (Shen et al., 2013). This complexity is further compounded 

by the significant environmental and social impacts inherent in the production, transportation, 

and disposal of perishable goods (Rafie-Majd et al., 2018). Addressing these challenges 

necessitates the development of innovative, sustainability-driven supply chain models that 

integrate economic, environmental, and social dimensions to enhance resilience and 

competitiveness. Supply chains compete with one another in commercial settings (Daghigh et 

al., 2016; Moghadam et al., 2022), as supply chains support the world economy and all 
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organizations belong to at least one of them (Scholten & Fynes, 2017). The market is the most 

significant element in today’s competition, and supply chains in leading nations are built to 

enhance business conditions, lower costs, raise service levels (satisfaction), and boost 

competitiveness (Tavakkoli Moghaddam et al., 2019). Additionally, managing it is one of the 

biggest issues facing managers (Scholten & Fynes, 2017), which is why a number of risks and 

disruptions have over time made the supply chain more vulnerable, it brings up a crisis. 

Considering the necessity of this issue, supply chain managers should identify potential 

disturbances so that they can improve them (Firouzabad et al., 2024). The most basic decision 

in managing the design of the supply chain network is to integrate it so that the flow of materials 

is one of the most important factors to achieve efficiency and also, the supply chain is stable. 

Thus, integration and integration of tactical, strategic, and operational decisions are required in 

order to fulfill this objective. By taking into account sustainability’s numerous aspects, such as 

its social, environmental, and economic objectives, a sustainable supply chain can be 

established (Taticchi et al., 2013). Research on the sustainability of perishable products 

necessitates a comprehensive approach, and the three aspects of sustainability—particularly the 

social dimension, which is underemphasized in studies—should be taken into account (Feil et 

al., 2020). Sustainable development addresses present needs while ensuring that future 

generations can fulfill their own requirements without compromising their ability to do so 

(Asgharizadeh et al., 2019). Due to population growth and the rising demand for dairy products, 

this significance is now increasingly important (Jouzdani et al., 2013). Also, the production and 

consumption of dairy products have considerable effects on the environment and are one of the 

most polluted industries (Feil et al., 2020). The healthcare sector is experiencing a global rise 

in costs, with pharmaceuticals representing a significant portion of these expenses. Despite the 

progress made in commercial supply chain manufacturing, storage, and distribution, numerous 

pharmaceutical companies continue to fall short of meeting the demands of the market. As a 

result, the pharmaceutical supply chain needs to employ effective optimization approaches 

(Savadkoohi et al., 2018). 

Perishability and the lifespan of perishable products strongly influence the three sustainability 

criteria (Scholten & Fynes, 2017). The transient characteristics of food and pharmaceuticals, 

which possess a finite shelf life, are of significant concern owing to the substantial waste 

generated, detrimental environmental impacts, and the specific requirements for their storage 

and transportation. These products are also impacted by rising inflation rates, rising 

transportation expenses, rising petrochemical prices (which are important for packaging these 

kinds of goods), and rising cost fluctuations production, high rate of perishability and cost of 

storage. Assuming that items are perishable, the limited shelf life of these goods can be 

attributed to supply chain network design, which includes issues with raw materials, inventory 

volume, transportation techniques, routes, and product flow (Asgharizadeh et al., 2019). 

Medicine and dairy products are considered perishable items and should be sold before they 

spoil or near their expiration date to maximize profit. This rule does not apply to these products. 

The importance of this issue allows for the assertion that the primary objective of supply chain 

risk management is to mitigate the effects of these risks through the development of models 

and methodologies designed for the identification, evaluation, and reduction of supply chain 

vulnerabilities (Jouzdani et al., 2013). Risk is not given much thought by domestic 

organizations; even developed nations have arrived at this conclusion. The entire organization 

must be involved in the active and methodical management of risk, taking supply chain 

unpredictability into account (Shen et al., 2013). It serves as a safety net in terms of time, 

capacity, inventory, and other factors to stop the chain from performing poorly (Rafie-Majd et 

al., 2018). Despite significant advancements in supply chain optimization, the management of 
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perishable goods remains fraught with risks and inefficiencies. The limited shelf life of dairy 

and pharmaceutical products exacerbates issues related to waste, storage costs, and 

environmental degradation, while fluctuations in transportation and production costs create 

additional layers of uncertainty. Incorporating sustainability into supply chain design presents 

a viable path to overcoming these challenges. The integration of tactical, strategic, and 

operational decision-making processes is essential for establishing a sustainable and resilient 

supply chain that effectively reconciles economic performance with social equity and 

environmental responsibility (Meidute-Kavaliauskiene et al., 2021).  

Recent advancements in sustainable perishable supply chain models have integrated emerging 

technologies and multi-dimensional sustainability considerations. For instance, Kumar and 

Agrawal (2024) introduced a quality-based architecture employing image processing model to 

classify perishable produce—specifically tomatoes—at different supply chain stages, thereby 

enabling more informed procurement and pricing decisions. Their model, integrating industry 

4.0 principles, achieved an 88.4% accuracy rate and significantly improved decision-making 

speed, reducing losses due to perishability. This reflects an evolving paradigm where AI-based 

inspection systems optimize freshness-based logistics, contributing simultaneously to 

economic, environmental, and social goals. Additionally, recent studies have incorporated 

renewable energy systems and uncertainty modeling to improve energy resilience and minimize 

emissions in cold chain logistics (Huang et al., 2024), and proposed decision frameworks for 

sustainable supplier selection and order allocation in food supply chains under fuzzy 

environments (Kumar et al., 2025). These contributions collectively emphasize that the 

effective integration of perishability, environmental constraints, and supply network resilience 

is key to achieving sustainable performance in modern supply chains. This study enhances the 

existing literature by formulating a multi-objective, mixed-integer linear programming model 

aimed at optimizing supply chains that are characterized by multiple levels, products, and time 

periods, all while accounting for uncertainty. It provides a novel perspective on managing 

disruptions and addressing the unique challenges of perishability, ensuring both profitability 

and sustainability in supply chain operations. 

2 THEORETICAL BACKGROUND:  Perishable products cannot be saved for a long time. 

Therefore, as long as these goods are transferred from one level of the chain to another, they 

are subject to expiration or damage, and their damage depends on the type of goods. Every 

supply chain aims to satisfy demands and with the maximum efficiency and lowest cost. For 

instance, certain commodities perish faster when the temperature surrounding them increases, 

so the storage conditions of perishable products also affect them. Retailers, wholesalers, 

distributors, manufacturers, and suppliers are all part of the supply chain, and each one of them 

satisfies the needs of the end consumers (Meidute-Kavaliauskiene et al., 2022). Numerous 

investigators have conducted studies in this domain, which are presented in the Table 1. 

Table 1. The review of related literature. 

N
o

. 

A
u

th
o

r 

Supply Chain 

Levels 

Product 

Lifecycle 

Sustainability 

Dimensions 
Network Design 

Solution 

Method 

R
et

ai
le

r 

M
an

u
fa

ct
u

r

er
 

S
u

p
p

li
er

 

F
ix

 

S
to

ch
as

ti
c 

E
co

n
o

m
ic

 

S
o

ci
al

 

E
n

v
ir

o
n

m
en

ta
l 

In
v

en
to

ry
 

A
ll

o
ca

ti
o

n
 

R
o

u
ti

n
g
 

L
o

ca
ti

o
n
 

S
ch

ed
u

li
n
g
 

1 

(Kumar 

et al., 

2025) 

 * *  * * * *  * *   
Fuzzy MILP, 

Goal Pro 

2 
(Kumar 

& 
 *  *  *  * *    * CNN, DOE 



 

https://doi.org/10.7441/joc.2025.02.07  155 

 

Agrawal, 
2024) 

3 

(Huang 

et al., 

2024) 

 * * *  *  *  * *   PSO 

4 

(Komijan
i & 

Sajadieh, 
2024) 

* *  *  * *    * *  PSO, SA 

5 
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Ghomi, 
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 *  *  *  *  *   * MILP 
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2022) 
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et al., 

2022) 
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decomposing 

9 

(Yazdani 
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2022) 
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2020) 
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Epsilon 

constraint 
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(Sazvar 
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Sepehri, 
2020) 
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Epsilon 

constraint 

13 

(Rabbani 

et al., 

2019) 

 *  *  *  *   *   *   *  *  *  
Robust 

programming 
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(Onggo 

et al., 

2019) 
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A detailed review of reveals that several scholars (e.g., Sazvar & Sepehri, 2020; Yadav et al., 

2022) took social, environmental, and economic factors into account while modeling the 

perishable products supply chain (Heidari & Rabbani, 2023; Tirkolaee & Aydin, 2022). The 

carbon emission index was considered as a widely used and valid index for determining 

environmental effects. Some scholars (Govindan et al., 2015; Shafiee et al., 2021; Tirkolaee & 

Aydin, 2022) considered some parameters as uncertain, some (Yavari & Geraeli, 2019; Zahiri 

& Pishvaee, 2017) saw stable optimization, and some (de Keizer et al., 2017; Ma et al., 2019; 

Shrivastava et al., 2018) considered uncertainty as random in the supply chain of perishable 

items. Two issues that are being addressed in this field of research are the limiting of the 

problem in the case chain and the issue of expiration in the objective function (Al Shamsi et al., 

2014; Chen & Zhong, 2013; Grillo et al., 2017). In the research field, Rabbani et al. (2020) 

created multi-cycle supply chains with several products, and Raut et al. (2020) took the fixed 

life index into account while designing perishable item supply chains. This study proposes a 

novel combination and model for the supply chain of multi-product and multi-cycle perishable 

items. This new approach takes into account the fixed life of the product and operates in a 

certainty-based environment for perishable products. This differs from the previous research, 

which explored various other cases in this domain. Recent research reflects a growing emphasis 

on hybrid AI models, renewable energy resilience, and scenario-based optimization for 

perishable goods. Kumar and Agrawal (2024) apply deep learning and DOE to enhance grading 



 

https://doi.org/10.7441/joc.2025.02.07  157 

 

accuracy of tomatoes, while Huang et al. (2024) address cold chain resilience through 

renewable energy planning. Similarly, other works (Komijani & Sajadieh, 2024; Kumar et al., 

2025; Souri & Fatemi Ghomi, 2025) demonstrate the importance of integrating perishability, 

sustainability, and operational uncertainty into mathematical supply chain models. These recent 

studies underscore the dynamic evolution of this field and highlight critical paths for future 

exploration. 

The supply chain network must be designed with the utmost care since there are long-term 

consequences of network design on supply chain performance, and short-term adjustments to 

the network design are expensive and time-consuming (Sadeghi Moghadam et al., 2024). 

Comparing this model to earlier studies, it differs in the following ways: multi-level, multi-

product, multi-period with four-level product inventory levels for perishable products and 

uncertainty in demand, price, damage-related costs, and extent of damage. Since perishable 

items are effective in public health, and their distribution is associated with risk, the 

perishability of pharmaceutical and dairy products as a case study with fixed life index, and the 

cost of product failure, is being considered in the proposed model. The suggested model also 

takes into account allocation, the balancing of related expenses (cost function), the calculation 

of production and distribution pricing decisions, and the emission costs of NOX, HC, CO2, and 

CO (environmental cost function). Taking into account the environmental tax, the possibility 

of a disruption in the perishable sustainable supply chain network’s architecture, and seven 

social indicators, the primary features of this study include training, job satisfaction, accidents, 

lost working days, health and safety, non-discriminatory hiring and firing, and validation of the 

suggested model and solution approaches using actual case studies in two separate Tehran/Iran 

organizations. 

3 RESEARCH METHODOLOGY: To effectively model and advance the supply chain for 

perishable goods, this study examines critical issues that have been largely overlooked in 

existing research literature, employing an evolutionary perspective. These issues are presented 

as one main issue and three smaller issues. The primary concern of creating a four-tiered, multi-

stage supply chain network that is sustainable is incorporating distributors, producers, suppliers, 

and the target market, or retailers. In this chain, it is assumed that the manufacturer collects and 

produces the required raw materials from several suppliers to produce several perishable 

products, and the suppliers send the required raw materials to the production factory 

immediately after the order. It is also a production center (pharmaceutical and dairy); it 

produces perishable goods and sends them to distribution centers and retailers to meet the 

request of the final customer. The manufactured products have a fixed life (expiry date), and if 

the products sent to the retailers are damaged or expired, they will be returned to the distributor 

channel and from there to the manufacturer. The manufacturer’s inventory is insufficient as a 

result of the suppliers’ failure to provide the raw materials. In the first sub-problem, product 

freshness has been taken into consideration in the objective and limitation function in order to 

compute economic value, include perishability in production modeling, and use product life as 

a loss or profit function. Minimizing the cost of perishability of products due to disruptions in 

the network and reducing demand, the cost of returning products due to the reduction of quality 

level (freshness) and the cost of product damage due to transportation, production and 

packaging. The second sub-problem is that the current models are ineffective under these 

circumstances, since the disruption of the facilities alters the model’s structure or the network. 

In actuality, there are several kinds of disruptions on transit routes. As a result, the design of 

these models ought to be such that disruption risks do not interfere with their effectiveness. In 

this section, we are attempting to look into the possibility of facilities and suppliers 

experiencing disruptions in the chain network design. 
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This case is being addressed under the third issue because the aspects of costs, appropriate 

resource use, and balanced attention to the field of sustainability in the supply chain are 

significant. In the first stage, to choose the appropriate social indicators with attention to the 

background related to the social dimension of sustainability, gathering social indicators and 

identifying the most important ones by identifying experts in the company (pharmaceutical and 

dairy products) were investigated and 19 social indicators were identified and were screened 

using the fuzzy delphi method (FDM). According to research specialists, departure, health and 

safety, employment without discrimination, and dismissal were all placed, validated, and 

employed in mathematical modeling to carry out the procedure. The fuzzy delphi method’s 

results displayed in Table 2. 

Table 2. Result of FDM for social criteria 

Index No. Indicator 
Fuzzy value 

Crisp value Decision 
L M U 

SC1 Non-discriminatory Hiring 0.25 0.5626 1 0.6042 Approved 

SC2 Promotion Based on Merit 0 0.4452 1 0.4817 Rejected 

SC3 Health and Safety 0.25 0.6878 1 0.6459 Approved 

SC4 Use of Standard and Non-hazardous Materials 0 0.3618 1 0.4539 Rejected 

SC5 Prohibition of Child Labor 0 0.4227 1 0.4742 Rejected 

SC6 Job Creation 0.25 0.1247 1 0.4582 Rejected 

SC7 Humanitarian Activities 0 0.4922 1 0.4974 Rejected 

SC8 Training 0.25 0.5121 1 0.5874 Approved 

SC9 Dismissal 0.25 0.3658 1 0.5386 Approved 

SC10 Fair Wage Payment and Compensation 0 0.4548 1 0.4849 Rejected 

SC11 Lost Workdays 0 0.6852 1 0.5617 Approved 

SC12 Working Hours 0 0.4011 1 0.467 Rejected 

SC13 Accidents 0.25 0.6322 1 0.6274 Approved 

SC14 Job Satisfaction 0 0.6338 1 0.5446 Approved 

SC15 Employee Engagement 0 0.4731 1 0.491 Rejected 

SC16 Traffic Congestion 0 0.5597 1 0.5199 Rejected 

SC17 Regional Economic Development 0 0.4765 1 0.4922 Rejected 

SC18 Cultural Preservation 0 0.5402 1 0.5134 Rejected 

SC19 Job Stability 0 0.5274 1 0.5091 Rejected 

 

Expert evaluations from both pharmaceutical and dairy sectors were converted into fuzzy 

numbers, and defuzzified using the centroid method to produce crisp values. The threshold for 

acceptance was determined by calculating the average crisp score across all indicators (Delshad 

et al., 2018). Indicators with a crisp value greater than or equal to this average (≈ 0.523) were 

considered “approved.” SC14 with a crisp value of 0.5446 exceeded the threshold and was 

approved, while SC16 with a value of 0.5199 did not meet the cutoff and was rejected. 

The proposed multi-objective mixed-integer nonlinear programming (MINLP) model was 

implemented using the general algebraic modeling system (GAMS 24.8.5) and solved using the 

CPLEX solver, which is widely used for large-scale linear and mixed-integer optimization 

problems. Additionally, the NSGA-II algorithm was implemented in MATLAB R2021a for 

meta-heuristic analysis and Pareto front generation. 

The development of the model requires several foundational assumptions that reflect realistic 

supply chain behaviors under uncertainty. The following subsection outlines these assumptions, 

which form the basis for the mathematical formulation. 

3.1. Model assumptions: The mathematical model proposed in this study is formulated as a 

MINLP framework that simultaneously optimizes economic, environmental, and social 
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performance indicators of a perishable product supply chain. It accounts for various uncertainty 

dimensions including demand volatility, expiration rates, and environmental taxes. The 

mathematical model assumption are as follows: 

• Various types of perishable products have been considered for designing the supply 

chain network (Darestani & Hemmati, 2019; Yavari & Zaker, 2019). 

• Retail demand, which is uncertain, has also been taken into account (Onggo et al., 2019; 

Wu et al., 2018) 

• A four-tier supply chain consists of multiple suppliers, manufacturers, distribution 

centers and retailers optimized in this research (developed by the authors). 

• Distribution centers play a mediating role in the transfer of various types of perishable 

products from manufacturing centers to retailers (developed by the authors). 

• It is assumed that all transportation between supply chain nodes occurs using vehicles 

with limited capacity, and that route selection decisions are influenced by both 

transportation cost and emissions (Rafie-Majd et al., 2018). 

• All the facilities in the production facility will have limited capacity (Bortolini et al., 

2018; Govindan et al., 2014). 

• The flow between two consecutive processes and the connection between the facility 

associated with a facilitator is not taking place (developed by the authors). 

• Considering products with a specific and fixed lifespan (Shafiee et al., 2021). 

• Considering different types of vehicles with different capacities (Tavakkoli 

Moghaddam et al., 2019). 

• The model incorporates environmental taxes (e.g., NOx, CO2, HC, and CO penalties), 

potential disruptions in supply chain facilities (due to natural disasters or supply-side 

failures), and social indicators derived from expert consensus (developed by the 

authors). 

Based on the assumptions defined, we now present the indices and parameters used in 

constructing the mathematical model. These elements capture the structural and operational 

characteristics of the perishable supply chain system. 

3.2. Indices, parameters, and variables of the model: Indices, variables, and problem 

parameters are listed in Table 3. 

Table 3. indices, Parameters and Variables 

In
d

ic
es

 

t The time horizon t (considered to be 6 months) 

P products 𝑃 = 1, 2, … , 𝑝 

S supply centers 𝑆 =  1,2, … , 𝑠 

R retail outlets 𝑅 = 1,2, … . , 𝑟 

K distribution centers 𝐾 = 1,2, … , 𝑘 

M raw materials 𝑀 = 1,2, … , 𝑚 

I routes 𝐼 = 1,2, … . , 𝑖 

N Products number  𝑁 = 1,2, … , 𝑛 

Z Warehouses Z = 1,2 … , 𝑧 

F Producers F =  1,2, … , 𝑓 

V vehicles 𝑉 = 1,2, … , 𝑣 

D Product price 

Y Product lifespan 

A Workers employed for up to 20 years of service 

B Workers employed for up to 10 years of service 
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C Workers employed for up to 5 years of service 

d Employee with less than 2 years of service 
E

co
n

o
m

ic
 p

a
ra

m
e
te

r
s 

 
𝑨𝑹𝒔𝒇 If the s supplier is available to supply s raw materials for the factory. 

𝑋𝑉𝑠𝑓 Type v vehicle capacity 

𝐶𝐴𝑃𝑠 Supply capacity of raw materials m by s supply centers 

𝑀𝐷𝑘𝑟𝑚 The average demand for product m across k distribution centers and retailer r  

𝑅𝐻𝑆𝑠𝑓 
Auxiliary variable for calculating the number of times of relocation of supply centers s and 

production center f 

𝑇𝐴𝐵𝑝 Weight of each product p 

𝐻𝐼𝑝𝑓 Processing time for the production of a unit of product p at the production center of f 

𝐶𝐴𝑃𝑓 Annual production capacity of production center f 

𝐶𝐴𝑃𝑘 Distribution center k holding capacity 

𝐶𝐴𝑃𝑟 Holding capacity of retailer r 

𝑄𝐷𝑃𝑁𝑛𝑟 Expected demand value of retail centers r for product p 

𝑄𝐷𝑃𝑁𝑛𝑘 Predicted demand value of distribution centers k for product p 

𝑇𝜀′ Taxes (percentage of fines) per unit of carbon emissions from production at the production center 

𝑇𝛽 
Tax (percentage of penalties) per unit NOX emissions resulting from transportation (product or raw 

material) of vehicle v 

𝑇𝛼 
Taxation (percentage of fine) per unit of CO2 emissions from transport (product or raw material) of 

vehicle v 

𝑇𝛾 
Taxation (percentage of fine) per unit of HC emissions resulting from transportation (product or raw 

material) of the vehicle v 

𝑇𝜆 
Taxes (percentage of fines) per unit of CO emissions resulting from transportation (product or raw 

material) of vehicle v 

𝐿𝑄𝐶𝑝𝑟 Product cost p in retail centers r 

𝐿𝑄𝐶𝑝𝑘 Cost of crop waste p in distribution centers k 

𝑂𝐷𝑁 Product type freshness priority (importance of product type relation) 

𝐹𝐶𝑄𝑟 The fixed cost associated with ordering from retailer centers r. 

𝐹𝐶𝑄𝑘 Fixed cost of ordering distribution centers k 

𝐹𝐶𝑄𝑓 Fixed cost of ordering production center f 

𝑋𝑉𝑇𝐶𝑝𝑓𝑘 Variable shipping cost per unit of product p from production center f to distribution centers k 

𝑋𝐹𝑇𝐶𝑝𝑓𝑘 Fixed shipping cost per unit of product p from production center f to distribution centers k 

𝑋𝑉𝑇𝐶𝑝𝑘𝑟 Variable cost of transportation per unit of product p from k distribution centers to retailers r 

𝑋𝐹𝑇𝐶𝑝𝑘𝑟 Fixed shipping cost per unit of product p from k distribution centers to retailers R 

𝑋𝑉𝑇𝐶𝑚𝑠𝑓 
Variable cost of transportation for each unit of raw materials m from supply centers s to production 

center f 

𝑋𝐹𝑇𝐶𝑚𝑠𝑓 Fixed shipping cost per unit of raw material m from supply centers s to production center f 

𝑋𝑉𝑃𝑝 Variable cost per unit of product p 

𝐴 Lost cost per unit (caused by failure) 

𝑁𝑣𝑡 Number of vehicles v per period t 

𝜋𝑝𝑟 Unit sales cost missing product type p in Retailer r 

𝜋𝑝𝑘 Cost of selling unit missing product type p in distribution centers k 

𝜋𝑝𝑓 Cost of sales unit lost product type p in production center f 

𝜃𝑝 Inventory failure rate of product type p 

𝐶𝐷𝑓  Unmet (unexpected) demand cost of production center f 

𝐶𝐷𝑘  Unmet application fee of distribution center k 

𝐶𝐷𝑟 Retailer's unmet application fee r 

ῶ Fuel consumption costs 

𝐹𝑋𝑘 Fixed cost of opening of distribution center k 

𝐻𝐹𝑚𝑧𝑓𝑡 Maintenance cost of raw material m in stock z Production center f per period t 

𝐹𝐻𝐾𝑝𝑧𝑘𝑡 Product maintenance cost p in warehouse z distribution centers k per period t 

𝐻𝐹𝑝𝑧𝑟𝑡 Product maintenance cost p in warehouse z retailers r per period t 

𝑉𝐼𝑝𝑧𝑘𝑡 Variable cost in distribution units 

𝑃𝑈𝑅𝑝𝑓𝑑𝑡 Cost of purchasing unit of product p from production center f at price level d at time t 

𝑃𝑈𝑅𝑝𝑘𝑑𝑡 Cost of purchasing unit of product p from distribution centers k at price level d in time t 

𝑃𝑈𝑅𝑝𝑠𝑑𝑡 Cost of purchasing raw materials p from supply centers at the price level d in the time frame t 

𝛼′𝑛 The percentage of product waste n produced by the manufacturer 

𝑅𝐻𝑆𝑓𝑘 
Auxiliary variable for calculating the number of times of movement of production centers f and 

distribution centers k 

𝑅𝐻𝑆𝑘𝑟 Auxiliary variable for calculating the number of relocations of k distribution centers and retailers r 



 

https://doi.org/10.7441/joc.2025.02.07  161 

 

S
o

c
ia

l 
P

a
ra

m
e
te

r
s 

 

𝑪𝑬𝑵𝒂 Salary of each worker up to 20 years of service in each period t 

𝐶𝐸𝑁𝑏 Salary of each worker up to 10 years of service in each period t 

𝐶𝐸𝑁𝑐 Employee salary up to 5 years of service in each period t 

𝐶𝐸𝑁𝑑 Salary of every worker working under 2 years of service in each period t 

𝐶𝐻𝑁 Cost of hiring a worker each period 𝑡 

𝐶𝐹𝑁 Worker's unemployment cost due to Covid every period 𝑡 

𝐶𝐸𝐷𝑓 Cost per hour of staff training employed by production center f in period 𝑡 

𝐶𝐸𝐷𝑠 Cost per hour of staff training recruited at the supply centers in period 𝑡 

𝐶𝑅𝐴 The average cost of each road accident relates to each level of the supply chain. 

𝐶𝑒𝑛𝑖 Weight related to each of the social effects 

𝐴𝐶𝑆𝐸𝑓 Average cost of purchasing safety equipment at production center f during period 𝑡 

𝐴𝐶𝑆𝐸𝑠 Average cost of purchasing safety equipment at supply centers s in period 𝑡 

𝐴𝐶𝑆𝐸𝑘 Average cost of purchasing safety equipment in distribution centers k during period 𝑡 

𝐴𝐶𝑆𝐸𝑟 The average cost of purchasing safety equipment at the production center during the period 𝑡 

𝐴𝐶𝑘 The average cost of accidents caused by non-compliance with safety in distribution centers k in 

period 𝑡 

𝐼𝑁𝑁𝑅 Average costs paid for the design and equipment of new products in the production center f in 

period t 

𝑆𝐴𝑓  Percentage of personnel absenteeism due to lack of dissatisfaction with the work environment for 

production center f during period t 

𝑆𝐴𝑠 Percentage of personnel absenteeism due to lack of dissatisfaction with the work environment for 

supply centers s in the time period t 

𝑆𝐴𝑘  Percentage of personnel absenteeism due to lack of dissatisfaction with the work environment for 

distribution centers k in the time period t 

𝑋𝐹𝑉𝑣𝑠𝑓 V-type vehicle capacity to transport raw materials from supply center s to production center f 

𝑋𝐹𝑉𝑣𝑓𝑘 V-type vehicle capacity to carry product from production center f to k distribution centers 

𝑋𝐹𝑉𝑣𝑘𝑟 V-type vehicle capacity to carry the product from to k distribution centers to retailer r 

𝐷𝐸𝑠𝑓 Transportation distance from supplier s to production center f 

𝐷𝐸𝑓𝑘 Transportation distance from production center f to distribution center k 

𝐷𝐸𝑘𝑟 Transportation distance from k distribution center to retailer r 

𝐴𝑆𝑅 Number of raw material transfers between suppliers and manufacturers 

𝐴𝑅𝑃 Number of products moving between producers and distribution centers 

𝐴𝑅𝑅 Number of products moving between distribution centers and retailers 

𝐸𝑇𝐻 Environmental rate of producer’s emission 

𝐸𝑇𝛾𝑣𝑠𝑓 
Emissions of HC per unit for transporting with vehicle v of cargo from the supply centers of s to the 

production center of f 

𝐸𝑇𝜆𝑣𝑠𝑓 
Amount of CO for vehicle v transport per unit of cargo from the supply centers s to the production 

center f 

𝐸𝑇𝛽𝑣𝑠𝑓 
NOX emission per unit of load per unit of transport by vehicle of v for every unit from supply center 

s to production center f 

𝐸𝑇𝛼𝑣𝑠𝑓 
CO2 emission per unit of load per unit of transport by vehicle of v from the supply center s of 

production center f 

𝐸𝑇𝛾𝑣𝑓𝑘 
The amount of HC per unit of transport by v per unit of load from the production center f to the 

distribution centers k 

𝐸𝑇𝜆𝑣𝑓𝑘 
Amount of CO for transport by vehicle v per unit of load from the production center f to distribution 

centers k 

𝐸𝑇𝛽𝑣𝑓𝑘 NOX emission per unit of freight from production center f to distribution centers k 

𝐸𝑇𝛼𝑣𝑓𝑘 
CO2 emission per unit of transport by v per unit of cargo from production center f to distribution 

centers k 

𝐸𝑇𝛾𝑣𝑘𝑟 HC emissions per unit of transport by v per unit of cargo from k distribution centers to retailer r 

𝐸𝑇𝜆𝑣𝑘𝑟 CO emissions per vehicle v transport per unit of cargo from distribution centers k to retailer r 

𝐸𝑇𝛽𝑣𝑘𝑟 NOX emissions per vehicle v transport per unit of cargo from k distribution centers to retailer r 

𝐸𝑇𝛼𝑣𝑘𝑟 
CO2 emissions per vehicle transport by vehicle v per unit of cargo from distribution centers k to 

retailer r 

𝐸𝑇𝛾𝑣𝑘𝑓 
Emissions of HC per unit of load per unit of transport with vehicle v from k distribution centers to 

production center f 

𝐸𝑇𝜆𝑣𝑘𝑓 
CO emissions per vehicle v transport per unit of cargo from distribution centers k to production 

center f 

𝐸𝑇𝛽𝑣𝑘𝑓 NOX emission per unit of load from distribution with vehicle v from centers k to production center f 

𝐸𝑇𝛼𝑣𝑘𝑓 
Emission per unit of transport by vehicle v per unit of cargo from distribution centers k to production 

center f 

𝐸𝑇𝜀′ Carbon emissions per product at the manufacturing center 
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𝐷𝑅𝑇 The number of days lost due to Covid in the workplace 

𝑈𝑃𝑘𝑡 Unemployment rate in distribution centers k during period t 

𝑈𝑃𝑓𝑡 Unemployment in the production center of, f during the time period t 

𝛼𝐹 Demand response weight factor 

𝑝𝑏 Late cost on order delivery 

𝐶𝑂𝐻𝑁𝑡 The cost of laying off employees due to coronavirus 

𝐸𝑇 Weight coefficient for components of social purpose function 

𝐴𝐶𝑆𝑠 Costs of accidents occurred at the s supply centers 

𝐴𝐶𝑆𝑓 The cost of accidents occurred at the production center of f 

𝐴𝐶𝑆𝑘 Cost of accidents occurred at distribution centers k 

𝐴𝐶𝑆𝑟 Cost of accidents occurred at retail centers r 

Other 

Parameter

s 

 

𝛼′ Coefficient of use of raw materials 

𝑀 A large number 

𝝎𝒑𝒇𝒌𝒗𝒕 The quantity of purchased product p (or gross order quantity of distribution center) from production center f to 

distribution centers k by vehicle type v within the time interval t 

𝝎𝒑𝒌𝒓𝒗𝒕 The quantity of purchased product p (or gross order value of retailer) from distribution centers k to retailer by vehicle 

type v in the time interval t 

𝝎𝒎𝒔𝒇𝒗𝒕 The amount of raw material purchased m (or gross order quantity of production center) from supply centers to 

production center f by vehicle type v within the time interval t 

𝑺𝑲 If the distribution center k is opened 1 otherwise zero 

𝑸𝑷𝑵′ Total product quantity   QPN^' 

𝝃𝒗 The amount of fuel consumed by the type of vehicle v per unit distance 

𝝋𝒗𝒔𝒇𝒕 If the vehicle v travels from supplier s to production center f in time period t, an otherwise zero 

𝝋𝒗𝒇𝒌𝒕 If the vehicle v travels from production center f to distribution center k in time period t, then it would be one, 

otherwise be zero 

𝜽𝒗𝒌𝒓𝒕 
 

If vehicle type v travels from distribution center k to retailer r in period t, one otherwise zero 

𝑼𝑺𝒔 Number of purchases from supply centers s 

𝑼𝑺𝒌 The number of purchases from distribution centers k 

𝑼𝑺𝒇 Number of purchases from the production center f 

𝑰𝑭𝒑𝒛𝒇𝒕 Product inventory level p in warehouse z production center f at the beginning of the year period t = 1 

𝑰𝒌𝒑𝒛𝒌𝒕 Inventory level p warehouse z distribution centers k at the beginning of the year period t = 1 

𝑰𝒓𝒑𝒛𝒓𝒕 Product inventory level p warehouse z retailers r at the beginning of the year period t = 1 

𝑰𝑺𝑴 Raw material inventory level in stock z production center f at the beginning of the year period t = 1 

𝑸𝑷𝑵𝒎𝒕𝒔𝒇 Product quantity m sent in period t from supply centers s to production center f under scenario s 

𝑸𝑷𝑵𝒑𝒕𝒇𝒌 The quantity of product p sent in period t from production center f to distribution centers k under scenario s 

𝑸𝑷𝑵𝒑𝒕𝒌𝒓 The quantity of product p sent in period t from distribution centers k to r retailers under scenario s 

𝑸𝑷𝑵𝒑𝒕𝒓𝒌 Quantity of product p returned due to being expired in period t from retailers r to distribution centers k under 

scenario s 

𝑸𝑷𝑵𝒑𝒕𝒌𝒇 The amount of product p returned due to expire in period t from distribution centers k to production center f under 

scenario s 

𝑾𝑭𝒓 The amount of goods returned due to the failure of retailer centers r 

𝑸𝑫𝒇 Unmet demand of production center f 

𝑸𝑫𝒌 Unmet demand of distribution centers k 

𝑸𝑫𝒓 Unmet demand amount of retailer centers r 

𝑯𝑵𝑻𝑺 The percentage of workers employed by the supply centers during the period t 

𝑯𝑵𝑻𝑭 Percentage of workers employed at the production center of f during the period t 

𝑯𝑵𝑻𝑲 Percentage of workers employed at distribution centers k during the period t 

𝑬𝑵𝑻𝒂 Percentage of workers working for up to 20 years in each period t 

𝑬𝑵𝑻𝒃 Percentage of employees up to 10 years of service in each period t 

𝑬𝑵𝑻𝒄 Percentage of employees up to 5 years of service in each period t 

𝑬𝑵𝑻𝒅 Percentage of workers working under the year of service in each period t 

𝑼𝑬𝑵𝑻𝒔 Percentage of workers unemployed by the covid in each period t 

𝑼𝑬𝑵𝑻𝒇 Percentage of workers unemployed by the covid disease at the production center of the f in each period t 

𝑼𝑬𝑵𝑻𝒌 Percentage of workers unemployed due to the covid in K-distribution centers in each period t 

𝑵𝑬𝑫𝒔 The number of staff trained in the production center f in the time period t 

𝑵𝑬𝑫𝒌 Number of trained staff in distribution centers k during the time period t 

𝑵𝑨𝑪𝒇 The number of accidents caused by non-compliance with safety or lack of safety equipment at the production center f 

during the time period t 
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𝑵𝑨𝑪𝒌 The number of accidents caused by non-compliance with safety or lack of safety equipment in distribution centers k 

during the time period t 

𝑵𝑨𝑪𝒓 The number of accidents caused by non-compliance with safety or lack of safety equipment in retail centers in the 

time period t 

𝑵𝑨𝑪𝒔 The number of accidents caused by non-compliance with safety or lack of safety equipment in the supply centers 

during the time period t 

𝑵𝑺𝑬𝒔 The number of safety equipment purchased in the supply centers during the time period t 

𝑵𝑺𝑬𝒌 The number of safety equipment purchased at distribution centers k during the time period t 

𝑵𝑺𝑬𝒓 The number of safety equipment purchased at the production facility f during the time period t 

𝑵𝑺𝑬𝒓 The number of safety equipment purchased in retail centers in the period t 

𝑵𝑺𝑨𝒇 Number of personnel complaints due to dissatisfaction of the environment of production center f in the time period t 

𝑵𝑺𝑨𝒇 Number of personnel complaints due to dissatisfaction of the environment of distribution centers k in the time period 

t 

𝑵𝑺𝑨𝒔 The number of personnel complaints due to lack of satisfaction in the environment of supply centers during the time 

period t 

𝑫𝑸𝑷𝒇 Quantity of demand from production centers f 

𝑫𝑸𝑷𝒔 Demand from supply centers s 

𝑫𝑸𝑷𝒓 Quantity of demand from sales centers r 

𝑫𝒐𝒕𝒏 Time to send order 

𝑹𝑰 Order request time 

𝑱𝑪𝑾𝒌 Number of job openings if distribution centers of k are opened with a level of capacity n 

𝑱𝑪𝑾𝒇 The number of job openings created if the production center f is produced with a capacity level n 

𝑭𝑹𝑰 Freshness level of orders (distribution, production, supply) in delivery 

𝑺𝑲𝑶𝒌𝒕𝒓 If the distribution center of k serves the retailer r at the time of t, one and otherwise zero 

𝑺𝑲𝑶𝒌𝒎𝒕𝒇 If the distribution center of k is assigned to the factory within the time interval t for product m one, otherwise zero 

𝑷𝑳𝒑𝒗𝒕t The number of pallets suitable for the carriage of product p by vehicle v in the time period t 

𝑩𝑸𝒔𝒇 Binary variable if raw materials are sent from supply centers to production center 

𝑩𝑸𝒇𝒌 Binary variable if the quantity of product p is sent from production center f to distribution centers k 

𝑩𝑸𝒌𝒓 Binary variable if the quantity of product p is sent from distribution centers k to retailer’s r 

Based on Eq. 1, the first objective function is formulated. Fuel consumption, purchases, unmet 

demand, ordering costs, expiration, product downtime, social (including hiring, firing, and the 

cost of firing due to a coronavirus), transportation and environmental costs, the creation of a 

distribution center, lower maintenance costs, and maximizing product freshness are the 

components of this model. The economic goal is to minimize the function of the goal. The 

second objective function based on Eq. 2 is to reduce emissions of environmental pollutants 

such as NOx CO, HC CO2 through the reduction of return goods and fuel consumption caused 

by significant transportation of vehicles. It looks into fuel usage as well and gets smaller the 

more items that are returned. The third objective function is related to the social dimension of 

supply chain sustainability. The components of the third objective function based on Eq. 3 

(social indicators of job satisfaction) are security that the social goal in this model is to 

maximize the goal function and on the other hand, minimizing risks and accidents is considered 

to reduce lost days. 
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𝑀𝑖𝑛𝐹1  = ῶ ∑ ∑ ∑ ∑ 𝜀𝑣. 𝜑𝑣𝑠𝑓𝑘𝑟𝐷𝐸𝑠𝑓𝑘𝑟

𝑟𝑘𝑓

 

𝑠

+ ∑ ∑ ∑ ∑ 𝜉𝑣. 𝐷𝐸𝑠𝑓𝑘𝑟 

 

𝑟

 

𝑘𝑓

 

𝑠

+ ∑ ∑ ∑ 𝑃𝑈𝑅𝑠𝑓𝑘 . 𝜔𝑠𝑓𝑘

 

𝑘𝑓

 

𝑠

+ ∑ ∑ ∑ 𝐹𝐶𝑄𝑓𝑘𝑟. 𝑈𝑆𝑓𝑘𝑟

 

𝑟

 

𝑘𝑓

+ ∑ ∑ ∑ 𝐶𝐷𝑓𝑘𝑟. 𝑄𝐷𝑓𝑘𝑟

 

𝑟

 

𝑘 𝑓

+ ∑ ∑ ∑ 𝐿𝑄𝐶𝑓𝑘𝑟. 𝜋𝑓𝑘𝑟

 

𝑟

 

𝑘𝑓

+ ∑ ∑ ∑ 𝐶𝐸𝑁𝑎𝑏𝑐𝑑. 𝐸𝑁𝑇

𝑟𝑘𝑓

+ ∑ ∑ ∑ 𝐶𝐻𝑁.

 

𝑘𝑓

𝐻𝑁𝑇𝑆

 

𝑠

+ ∑ ∑ ∑ 𝐶𝑂𝐻𝑁𝑡

𝑘𝑓 𝑠

𝑈𝐸𝑁𝑇𝑡

+ ∑ ∑ ∑ 𝑈𝐸𝑁𝑇𝑠𝑓𝑘 . 𝐶𝐹𝑁

𝑘𝑓𝑠

+ [∑ ∑ 𝐴. 𝑊𝐹𝑘𝑟

 

𝑟𝑘

 

+ 𝑁𝑣𝑡 ∑ ∑ ∑ ∑[(𝑄𝑃𝑁𝑝𝑡𝑠𝑓𝑘𝑟. 𝑋𝑉𝑇𝐶𝑠𝑓𝑘𝑟)

 

𝑟

 

𝑘

 

𝑓

 

𝑠

+ 𝑋𝐹𝑇𝐶𝑠𝑓𝑘𝑟] + [𝑆𝐾. (𝑄𝑃𝑁𝑝𝑡𝑓𝑘 . 𝑋𝑉𝑇𝐶𝑝𝑘) + 𝑋𝐹𝑇𝐶𝑝𝑘]

+ ∑ ∑ ∑ 𝜔. 𝑇𝛽. 𝑇𝜆. 𝑇𝛾. 𝑇𝛼

 

𝑘𝑓

 

𝑠

+ 𝐸𝑇𝜀′. 𝑇𝜀′𝑄𝑃𝑁′

+ 𝑆𝐾. 𝑇𝛽. 𝑇𝛾. 𝑇𝜆. 𝑇𝛼. 𝜔𝑝𝑓𝑘𝑣 + 𝐹𝑋𝑘 . 𝑆𝐾

+ ῶ. 𝜑𝑣. 𝐷𝑒. 𝑠𝑘. 𝜉𝑣 + 𝐻𝑅𝑝𝑧𝑟𝑡. 𝐼𝑅𝑝𝑧𝑘𝑡 + 𝐼𝐾𝑝𝑧𝑘𝑡

+ (𝐻𝐾𝑝𝑧𝑘𝑡 + 𝑉𝐼𝑝𝑧𝑘𝑡) + 𝐻𝐹𝑝𝑧𝑓𝑡. 𝐼𝑆𝑀

− ∑ ∑ ∑ 𝐹𝑅𝐼. 𝑄𝑃𝑁́𝑛

 

𝑘𝑓

 

𝑠

+ ∑ ∑ ∑ 𝑂𝐷𝑁. 𝐹𝑅𝐼. 𝐷𝑄𝑃𝑓𝑘𝑟

 

𝑟

 

𝑘𝑓

 

(1) 

𝑀𝑖𝑛𝐹2 =  ∑ ∑ ∑ 𝜔. 𝑊𝐹𝑘𝑟. 𝐿𝑄𝐶𝑓𝑘𝑟

 

𝑘𝑓𝑠

+ ∑ ∑ ∑ ∑ 𝐴𝑆𝑅. 𝜔𝑝𝑠𝑓𝑣

 

𝛾

 

𝜆

 

𝛽

 

𝛼

. 𝐷𝐸𝑠𝑓 . 𝐸𝑇𝛼𝛽𝜆𝛾

+ ∑ ∑ ∑ ∑ 𝐴𝑅𝑃. 𝜔𝑝𝑓𝑘𝑣

 

𝛾

 

𝜆

 

𝛽

 

𝛼

. 𝐷𝐸𝑓𝑘 . 𝐸𝑇𝛼𝛽𝜆𝛾

+ ∑ ∑ ∑ ∑ 𝐴𝑅𝑅. 𝜔𝑝𝑘𝑟𝑣

 

𝛾

 

𝜆

 

𝛽

 

𝛼

. 𝐷𝐸𝑘𝑟 . 𝐸𝑇𝛼𝛽𝜆𝛾 

(2) 

 

 

𝑀𝑎𝑥𝐹3 = ∑ ∑ ∑ 𝑐𝑒𝑛𝑖. 𝑆𝐴. 𝑁𝑆𝐴

𝑘𝑓𝑠

+ ∑ ∑ ∑ ∑ 𝑐𝑒𝑛𝑖. 𝑁𝑆𝐸. 𝐴𝐶𝑆𝐸

𝑟𝑘𝑓𝑠

+ ∑ ∑ 𝑐𝑒𝑛𝑖. 𝑁𝐷𝐸𝐹.

𝑘𝑓

𝑁𝐸𝐷 + 𝑆𝑘 ∑ ∑ 𝐽𝐶𝑊. 𝑈𝑃

𝑘𝑓

− ∑ ∑ 𝑝𝑏

𝑘𝑓

[𝐹𝛼 ∑ ∑ 𝜔𝑝𝑣

𝑘

+ (1

𝑓

− 𝐹𝛼) ∑ ∑ 𝑊𝐹]

𝑘𝑓

+ ∑ ∑ ∑ ∑ 𝐷𝑂𝑡𝑛 . 𝐷𝑄𝑃𝑟(𝐷𝑂𝑡𝑛 − 𝑅𝐼)

𝑟

𝑟

𝑘

𝑘

𝑗

𝑓

𝑖

𝑠

+ ∑ ∑ ∑ ∑ 𝑐𝑒𝑛𝑖. 𝐴𝐶𝑆. 𝑁𝐴𝐶

𝑟

𝑟

𝑘

𝑘

𝑓

𝑓

𝑟

𝑠

+ ∑ ∑ ∑ ∑ 𝑐𝑒𝑛𝑖. 𝐶𝑅𝐴. (𝐴𝑆𝑅 + 𝐴𝑅𝑃 + 𝐴𝑅𝑅)

𝑟𝑘𝑓𝑠

+ 𝐸𝑇 ∑ ∑ ∑ ∑ 𝐷𝑅𝑇. 𝑄𝑃𝑁

𝑟𝑘𝑓𝑠

 

(3) 

 The given model includes the following constraints: 
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∑ ∑ ∑ ∑ 𝐸𝑇𝑣𝑠𝑓 . 𝜔𝑝𝑠𝑓𝑣

 

𝛾

 

𝜆

 

𝛽

 

𝛼

. 𝐵𝑄𝑠𝑓 ≤ ∑ 𝐸𝑇𝛼𝛽𝜆𝛾

 

 

 (4) 

∑ ∑ ∑ ∑ 𝐸𝑇𝑣𝑓𝑘 . 𝜔𝑝𝑘𝑓𝑣

 

𝛾

 

𝜆

 

𝛽

 

𝛼

. 𝐵𝑄𝑓𝑘 ≤ ∑ 𝐸𝑇𝛼𝛽𝜆𝛾

 

 

 (5) 

∑ ∑ ∑ ∑ 𝐸𝑇𝑣𝑘𝑟. 𝜔𝑝𝑘𝑟𝑣

 

𝛾

 

𝜆

 

𝛽

 

𝛼

. 𝐵𝑄𝑘𝑟 ≤ ∑ 𝐸𝑇𝛼𝛽𝜆𝛾

 

 

 (6) 

∑ ∑ ∑ 𝑋𝑉𝑣𝑓𝑘

 

𝑟

 

𝑘

 

𝑓

− 1 ≤ ∑ ∑ ∑ 𝑋𝑉𝑣𝑓𝑘

 

𝑟

 

𝑘

 

𝑓

≤ ∑ ∑ ∑ 𝑋𝑉𝑣𝑓𝑘

 

𝑟

 

𝑘

 

𝑓

 (7) 

∑ 𝑆𝐾 ≤ 1 (8) 

𝑄𝑃𝑁ʹ𝑛 ≥ 𝑄𝑃𝑁ʹ𝑛 − 𝑄𝑃𝑁ʹ𝑛 . 𝛼′ (9) 

𝑄𝑃𝑁ʹ𝑛 − 𝑄𝑃𝑁ʹ𝑛. 𝛼′𝑛 ≥ ∑ ∑ 𝑄𝑃𝑁𝑝𝑡

 

𝑟

 

𝑘

− ∑ ∑ 𝜃𝑝

 

𝑟

 

𝑘

 (10) 

𝐻𝐼𝑝𝑓 ∙ 𝑄𝑃𝑁𝑝𝑡𝑓𝑘 ≤ ∑ 𝐶𝐴𝑃𝑘 . 𝑆𝐾

 

𝑘

 (11) 

𝐻𝐼𝑝𝑓 ∙ 𝑄𝑃𝑁𝑝𝑡𝑓𝑘 ≤ ∑ ∑ ∑ 𝐶𝐴𝑃𝑓𝑘𝑟

 

𝑟

 

𝑘

 

𝑓

 (12) 

∑ 𝐴𝑅𝑠𝑓

 

𝑓

≤ (1 − 𝑎𝑘
𝑠 )𝐶𝐴𝑃𝑠 (13) 

QDPNrp + QDPNkp = [(ωp.st.kvt + ωp.k.rv) − (WFk + WFr)] (14) 

IF𝑝𝑧𝑓 + ∑ ∑ 𝜔𝑃𝑓𝑘𝑣

 

𝑟

 

𝑘

= ∑ ∑ 𝑄𝑃𝑁𝑝𝑡𝑘𝑟 ∙ 𝑆𝐾𝑂𝑘𝑡𝑟

 

𝑟

 

𝑘

 (15) 

∑ ∑ 𝜔𝑃𝑣

 

𝑟

 

𝑘

≤ ∑ ∑ 𝐶𝐴𝑃𝑘𝑟

 

𝑟

 

𝑘

 ∙ 𝑆𝐾 (16) 

∑ ∑ ∑ 𝜔𝑝𝑣

 

𝑟

 

𝑘

 

𝑓

≤ ∑ ∑ ∑ 𝑋𝑉𝑣

 

𝑟

 

𝑘

 

𝑓

 (17) 

∑ ∑ ∑ 𝐷𝑄𝑃𝑓𝑘𝑟 ∙ 𝜑𝑣

 

𝑟

 

𝑘

 

𝑓

≤ 𝑋𝑉𝑣 ∙ 𝑉𝐹𝑖𝑗 (18) 

𝑆𝐾𝑂𝑡𝑟 ≤ 1 (19) 

𝜃𝑣𝑘𝑟𝑡 ≤ 1 (20) 

𝑄𝑃𝑁𝑝𝑡𝑓𝑘 ∙ 𝑆𝐾𝑂𝑘𝑚𝑡𝑓 ≥ ∑ 𝑀𝐷𝑘𝑟𝑚𝑆𝐾𝑂𝑡𝑟

 

𝑘

 (21) 

𝑄𝑃𝑁𝑝𝑡𝑓𝑘 ≥ ∑ 𝜔𝑃𝑘𝑟𝑣𝑡

 

𝑘

 (22) 

𝑄𝑃𝑁ʹ𝑛 − 𝑄𝑃𝑁ʹ𝑛. 𝛼′𝑛 ≥ ∑ ∑ 𝑀𝐷𝑘𝑟𝑚

 

𝑟

 

𝑘

. SKOtr (23) 

∑ ∑ 𝑀𝐷𝑘𝑟𝑚

 

𝑟

 

𝑘

. SKOtr ≤ SK ∙ CAPk (24) 

QPNʹn = ∑ QDPNnr + QDPNnk

𝑟

𝑛

− (QDf + QDk) (25) 

QPNʹn ≥ ∑ QDPNnr  − QDr

 

𝑟

 (26) 

∑ QPNptsf

 

𝑠

≤ CAPs (27) 

∑ 𝑄𝑃𝑁𝑝𝑡𝑠𝑓
 
𝑓

𝑋𝑉𝑣

+ 𝑅𝐻𝑆𝑠𝑓 = 𝐴𝑆𝑅 (28) 

∑ 𝑄𝑃𝑁𝑝𝑡𝑓𝑘
 
𝑘

𝑋𝑉𝑣

+ 𝑅𝐻𝑆𝑓𝑘 = 𝐴𝑆𝑃 (29) 

∑ 𝑄𝑃𝑁𝑝𝑡𝑘𝑟
 
𝑟

𝑋𝑉𝑣

+ 𝑅𝐻𝑆𝑘𝑟 = 𝐴𝑅𝑅 (30) 

𝐴𝑆𝑅 + 𝑅𝐻𝑆𝑠𝑓 ≥ 0 (31) 

𝐴𝑆𝑝 + 𝑅𝐻𝑆𝑓𝑘 ≥ 0 (32) 

𝐴𝑆𝑅 + 𝑅𝐻𝑆𝑘𝑟 ≥ 0 (33) 

∑ ∑ ∑ 𝑄𝑃𝑁𝑝𝑡𝑠𝑓

 

𝑟

 

𝑘

 

𝑓

= ∑ ∑ ∑ 𝐷𝑄𝑃𝑆𝑘𝑟

 

𝑟

 

𝑘

 

𝑓

 (34) 

∑ 𝑆𝐾 = 1

 

𝑘

 (35) 

𝑆𝐾𝑂𝑘𝑡𝑟 ≤ 𝑆𝐾 (36) 

𝑆𝐾𝑂𝑘𝑡𝑟 ≤ 𝑄𝑃𝑁𝑝𝑡𝑘𝑟 ≤ 𝑆𝐾𝑂𝑘𝑡𝑟 ∙ 𝑀 (37) 

𝐼𝑆𝑀𝑡 = 𝐼𝑆𝑀𝑡−1 + ∑ 𝜔𝑝𝑠𝑘𝑣

 

𝑓

− ∑ 𝛼ʹ ∙ 𝑄𝑃𝑁ʹ𝑛

 

𝑓

 (38) 
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𝐼𝐹𝑧𝑝𝑧𝑓,𝑡 = (1 − 𝜃𝑝)𝐼𝐹𝑝𝑧𝑓,𝑡−1 + 𝑄𝑃𝑁ʹ𝑛 − ∑ 𝑄𝑃𝑁𝑝𝑡𝑓𝑘

 

𝑓

 (39) 

𝐼𝑘𝑝𝑧𝑘 = 𝐼𝑘𝑝𝑧𝑘,𝑡−1 + ∑ 𝜔𝑃𝑓𝑘𝑣𝑡

 

𝑓

− ∑ 𝑄𝑃𝑁𝑝𝑡𝑘𝑟

 

𝑘

 (40) 

∑ ∑ ∑ 𝐷𝑄𝑃𝑓𝑘𝑟

 

𝑟

 

𝑘

 

𝑓

− ∑ ∑ ∑ 𝜔𝑃𝑓𝑘𝑣𝑡

 

𝑟

 

𝑘

− ∑ ∑ ∑ 𝑊𝐹

 

𝑟

 

𝑘

 

𝑓

 

𝑓

= ∑ ∑ ∑ 𝑄𝐷𝑓𝑘𝑟

 

𝑟

 

𝑘

 

𝑓

 (41) 

∑ ∑ ∑ 𝜔𝑝𝑣

 

𝑟

 

𝑘

 

𝑓

≤ ∑ ∑ ∑ 𝜑𝑣

 

𝑟

 

𝑘

 

𝑓

. ∑ ∑ ∑ 𝑋𝑉𝑀𝑣𝑚

 

𝑟

 

𝑘

 

𝑓

 (42) 

∑ ∑ ∑ ∑ 𝐼𝑖𝑡.𝑦−1

 

𝑟

 

𝑘

 

𝑓

 

𝑠

≤ ∑ ∑ ∑ ∑ 𝐼𝑖𝑦

 

𝑟

 

𝑘

 

𝑓

 

𝑠

 (43) 

∑ ∑ ∑(𝑋𝐹𝑇𝐶𝑓𝑘𝑟 + 𝑋𝐹𝑇𝐶𝑓𝑘𝑟)

 

𝑟

 

𝑘

 

𝑓

. (1 − 𝐼𝑖𝑟
𝑦)

≤ ∑ ∑ ∑(Ir𝑝𝑧𝑟𝑡 + 𝜔𝑝𝑘𝑟𝑣) − 𝑄𝑃𝑁𝑝𝑡𝑘𝑟 + 1

 

𝑟

 

𝑘

 

𝑓

 

(44) 

𝑄𝑃𝑁𝑝𝑡𝑟𝑘 = 0 (45) 

𝑄𝑃𝑁𝑝𝑡𝑘𝑓 = 0 (46) 

𝑄𝑃𝑁𝑝𝑡𝑘𝑓 + 𝑄𝑃𝑁𝑝𝑡𝑟𝑘 ≤ 𝐵𝑗 . ∑ ∑ 𝑄𝑃𝑁𝑝𝑡

 

𝑟

 

𝑘

 (47) 

∑ ∑ ∑ 𝐸𝑁𝑇𝑎𝑏𝑐𝑑. 𝑆𝐴

𝐾𝐹𝑆

≤ ∑ ∑ ∑ 𝐸𝑁𝑇𝑎𝑏𝑐𝑑

𝑘𝑓𝑠

 (48) 

𝐼𝑖𝑟
𝑦

 , 𝐼𝑖𝑓
𝑦

 , 𝐼𝑖𝑠
𝑦

, 𝜑𝑣𝑘.𝑟 , 𝜑𝑣𝑓𝑘 , 𝜑𝑣𝑠𝑓 , 𝑆𝐾𝑂𝑘𝑡𝑟, 𝑆𝐾𝑂𝑘𝑚𝑡𝑓 , 𝑆𝐾, 𝑆𝑅, 𝑉𝐹𝑖.𝑗 , 𝜃𝑣𝑘𝑟𝑡, 

𝜃𝑣𝑓𝑘𝑡, 𝜃𝑣𝑠𝑓𝑡, 𝐵𝑄𝑠𝑓, 𝐵𝑄𝑓𝑘, 𝐵𝑄𝑘𝑟, 

(49) 

𝐼𝑖𝑟
𝑦

 , 𝐼𝑖𝑓
𝑦

 , 𝐼𝑖𝑠
𝑦

, 𝜑𝑣𝑘.𝑟 , 𝜑𝑣𝑓𝑘 , 𝜑𝑣𝑠𝑓 , 𝑆𝐾𝑂𝑘𝑡𝑟, 𝑆𝐾𝑂𝑘𝑚𝑡𝑓 , 𝑆𝐾, 𝑆𝑅, 𝑉𝐹𝑖.𝑗 , 𝜃𝑣𝑘𝑟𝑡, 

𝜃𝑣𝑓𝑘𝑡, 𝜃𝑣𝑠𝑓𝑡, 𝐵𝑄𝑠𝑓, 𝐵𝑄𝑓𝑘, 𝐵𝑄𝑘𝑟,𝐴𝑆𝑃, 𝐴𝑅𝑅, 𝑅𝐻𝑆𝑠.𝑓 , 𝑅𝐻𝑆𝑓𝑘, 

𝑅𝐻𝑆𝑘𝑟, 𝑋𝑉𝑣, 𝐶𝐴𝑃𝑠, 𝑄𝐷𝑅𝑖 , 𝑄𝐷𝑃𝑁𝑛𝑠, 𝑄𝐷𝑃𝑁𝑛,𝑟 , 𝑄𝐷𝑃𝑁𝑛,𝑘 , 

𝑄𝑑𝑓𝑎𝑐, 𝑄𝑑𝑘𝑖 , 𝐶𝑎𝑝𝑘 , 𝜔𝑃𝑓𝑘𝑣𝑡, 𝜔𝑝.𝑘.𝑟𝑣, 𝜔𝑃.𝑓,𝑘,𝑣, 𝑀𝐷𝑘𝑟𝑚, 𝑋𝑉𝑣𝑘𝑟, 

𝑋𝑉𝑣𝑓𝑘 , 𝑋𝑉𝑣𝑠𝑓 , 𝐼𝑓𝑎𝑐𝑝𝑧𝑓 , 𝐶𝐴𝑃, 𝐻𝑖𝑝𝑓 , 𝑎𝑘
𝑠 , 𝑃𝐿𝑝𝑣𝑡, 𝑇𝐴𝐵𝑝 , 

𝐻𝑁𝑡, 𝑈𝐸𝑁𝑡, 𝐵𝑄𝑘.𝑠, 𝜃𝑃 , 𝐸𝑇𝜆, 𝐸𝑇𝛽, 𝐸𝑇𝛼, 𝐸𝑇𝛼𝑘𝑠 𝐸𝑇𝛽𝑘𝑠, 𝐸𝑇𝛾𝑘𝑠, 

𝐸𝑇𝛼𝑘𝑠  , 𝐸𝑇𝛾, 𝐸𝑇𝜆𝑓𝑘 , 𝐸𝑇𝛽𝑓𝑘 , 𝐸𝑇𝛾𝑓𝑘 , 𝐸𝑇𝛼𝑓𝑘, 𝐸𝑇𝜆𝑠𝑓 , 𝐸𝑇𝛽𝑠𝑓 , 

𝐸𝑇𝛾𝑠𝑓 , 𝐸𝑇𝛼𝑠𝑓   𝐼𝑘𝑝𝑧𝑘 , 𝑄𝑃𝑁𝑝𝑡𝑓𝑘 , 𝑄𝑃𝑁𝑝𝑡𝑘𝑟, 𝑄𝑃𝑁𝑝𝑡𝑠𝑓 , 𝑄𝑃𝑁𝑝𝑡𝑟𝑘 , 𝛼ʹ, 

𝐼𝑆𝑀𝑡   𝑄𝑃𝑁ʹ𝑛 , 𝐷𝑄𝑃𝑆, 𝐷𝑄𝑃𝑘 , 𝐷𝑄𝑃𝑟 , 𝐴𝑆𝑅 ≥ 0 

(50) 

The provided equations, from 4 to 7, outline the emissions of various pollutants, such as CO2, 

NOx, C, and HC. Equation 8 calculates the sum of product orders 𝑝 transmitted by vehicle type 

𝑣 in period 𝑡, which is then divided by the weight of the product type 𝑝 to determine the number 

of vehicles of type 𝑣 required to transport the products 𝑝 in period 𝑡. Equation 9 guarantees that 

a distribution center cannot be situated at a location that exceeds its capacity. Equations 10 and 

11 establish the flow balance constraint in production centers, distribution centers, and retail 

stores. Equations 12 and 14 represent the capacity limitations of suppliers, production centers, 

and distribution centers. Equation 15 states that the quantity of demand for distribution and 

retail centers is equal to the amount of goods sent to those centers, adjusted for the fraction of 

estimated demand and the quantity of expired products. Equation 16 governs the inventory 

balances in distribution centers and retail stores. 

The stipulations outlined in equation 17 indicate that the volume of products dispatched to retail 

and distribution centers must align with their designated capacities. Equation 18 delineates the 

capacity parameters for each vehicle, while equation 19 ensures that these capacities are 
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adequately adjusted to meet transportation demands. Furthermore, equation 20 specifies that 

each retailer is to receive supplies exclusively from a single distribution center, and equation 

21 guarantees that each retailer is serviced by the distributor only once. Equation 22 affirms 

that the average demand for distribution centers across all product lines is satisfied. In addition, 

equation 23 asserts that the output of each product from the distribution center must not exceed 

the input received by that center. Equation 24 is concerned with ensuring that the average 

customer demand is fulfilled. Lastly, equation 25 encapsulates the capacity limitations 

applicable to both distribution and retail centers. 

Equations 26 and 27 delineate the equilibrium of demand, signifying that the demand for 

product M from the retailer corresponds to the aggregate of items dispatched from all 

distribution centers to the retail hub. Equation 28 asserts that the procurement from each 

supplier must remain within its designated capacity limits. Equations 29 through 34 quantify 

the frequency of movements among supply centers, manufacturing facilities, distribution 

centers, and retailers for the transportation of products and raw materials. Equations 35 and 36 

assert that the demand at each level of the supply chain for every product during each time 

period must be completely satisfied within that same period. Equation 37 clarifies that a 

distribution center may only serve customers if it has been constructed. Equation 38 

demonstrates that products can flow from a distribution center to a customer only if that 

distribution center is allocated to the customer. Equation 39 is derived from the equilibrium 

equations concerning raw materials at the production center. Equations 40 and 41 guarantee 

that the quantities of product types in both the production center and distribution centers are 

consistent across each period. Finally, equation 42 highlights the unmet demands present in 

retail, distribution, and production centers.  

Equation 43 indicates that the auxiliary variable representing the product life of product 𝑦 −
1 assumes a value of one if the auxiliary variable for the product with a life of y is equal to one. 

This implies that the inventory of product life 𝑦 − 1 is utilized to satisfy demand when the 

inventory of product life y is inadequate. Equation 44 serves to ensure that all quantitative 

variables do not attain a value of one, stipulating that if the available inventory does not employ 

the life of product 𝑦 − 1 to fulfill demand, the positivity constraint on the right-hand side results 

in the auxiliary variables for product 𝑦 − 1 being zero. Equations 45 and 46 assert that during 

the period preceding the product's lifetime, no products are transferred from retailers to 

distribution centers or from distribution centers to production centers. Equation 47 addresses 

the return of expired products to both distribution and manufacturing centers. Equation 48 

specifies that the number of employees terminated in period t must be fewer than the number 

of employees hired. Finally, Equations 49 and 50 also delineate variables that are constrained 

to zero and one, as well as non-negative variables. 

4 RESULTS AND DISCUSSION: In this study, the models underlying presumption, which 

were derived from the characteristics of perishable products in the dairy and pharmaceutical 

industries, are taken into account. Subsequently, the model underwent validation, and twelve 

distinct problems were formulated to assess the efficacy of the proposed model. These problems 

were analyzed using experimental data and were resolved with the aid of GAMS software and 

the CPLEX solver. Then, the values related to the parameters of the pharmaceutical and dairy 

company were collected. In the next step, validation of the proposed model was evaluated and 

analyzed using the NSGAII meta-heuristic algorithm.  

As mentioned, to solve the proposed multi-objective model, the modified ε-constraint method 

was applied. This method transforms a multi-objective optimization problem into a single-

objective problem by optimizing one objective function while converting others into constraints 
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bounded by a series of predefined epsilon values. The approach used in this study involves a 

grid-based ε-segmentation technique that generates Pareto-optimal solutions across the 

objectives by systematically varying these bounds. This method is particularly useful for 

exploring trade-offs between objectives and was employed to generate a representative set of 

efficient solutions for comparative analysis. Here is the set of optimal Pareto solutions 

according to Table 3. “OF” stands for “objective function.” OF 1, OF 2, and OF 3 represent the 

economic, environmental, and social sustainability objectives, respectively, as defined earlier 

in equations (1), (2), and (3). 

Table 3. Optimal pareto solutions 

Third OF Second OF First OF 𝜺 
  

12418 1939 24759 1909.00 
15436 3831 45314 3793.00 
16512 5686 65564 5677.00 
21619 7578 87119 7561.00 
22546 9459 13029 9445.00 
24812 11344 17525 11329.00 
24919 13234 24679 13213.00 
25512 15125 31833 15097.00 
25396 16990 39456 16981.00 
25659 18881 48143 18873.00 

The Pareto diagram is also found in Figure 1. 

  

 
Figure 1. The ratio epsilon values in three objective functions 

As is evident, the ratio of the first objective function to the values of epsilon has shown that, in 

the first objective function, the breakdown effect has occurred in the optimization process, and 

according to the analysis done in this dimension, it has been shown that in this dimension the 

optimal profit has been reduced, and the second and third objective functions have the same 

trend in accordance with the increase of epsilon values. Hence, the Pareto front of the optimal 

solutions presented in Figure 2. 
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Figure 2. Pareto fronts optimal solution of the mathematical model 

Following, the decision variables of the model were analyzed. The resulting values for the 

variable  𝐼𝑘𝑝𝑧𝑘𝑡    illustrate the level of inventory of the distributors in each time period, which 

is trending up until the first 3 periods of these values and progressively decreases after the fourth 

period. This is due to the fact that we only have production in the first three periods. The result 

of solving the integrated objective function model is the response to the first objective function 

(Z1), as seen in the sensitivity analysis of model stability versus stability in Figure 3. As 

predicted, a rise in ω causes Z1 to rise; however, the slope of this decline will eventually 

steepen. 

 

Figure 3. The association between Z1 value from the integrated objective function  

In comparing the current supply chain to the one suggested in Table 4, we see that operating 

expenses for 9 have decreased by 20% in the current supply chain. The environmental impact 

has been improved by nearly 20 times at the same time, and the level of service provided to 

employees has also improved. The comparisons demonstrate that the network developed for 

various performance objectives was resilient. The results pertaining to the combined method, 

in relation to the three objective functions established for the primary model, are summarized 

in Table 4. 

Table 4. Objective function components for ten iterations 

Repetition 
T otal  

cost 

Emissions 

Costs 

Shipping 

cost 

Cost of 

Employment 

Cost of Social 

Indicators 

1 922805 263960 155490 18136 424179 

2 945580 242290 154800 15764 408224 

3 963829.4 246500 157030 7230 423961 
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Repetition 
T otal  

cost 

Emissions 

Costs 

Shipping 

cost 

Cost of 

Employment 

Cost of Social 

Indicators 

4 944579 253110 152061 2975 407804 

5 968527 252900 154831 21878 411730 

6 967735 244840 156351 15764 423201 

7 958540 251140 155031 13684 411634 

8 945948 242830 154181 4049 418470 

9 934048 239610 150341 8882 408956 

10 981056 251920 157851 23817 419072 

Expected value 960264.7 248910 154797 13218 417527 

Standard deviation 18211.31 7178.28 2235.45 7213.92 6760.77 

 

Repetition 1’s results give us better answers than those from previous iterations, as Table 5 

illustrates. 

Table 5. Results of the main model objectives based on each repetition 

 
Repetition OF 1 OF 2 OF 3 

1 1.3438e+14 1.1292e+11 9.2604e+09 

2 3.7610e+14 3.4441e+11 5.6963e+09 

3 3.7399e+14 3.4251e+11 5.7955e+09 

4 3.7570e+14 3.4357e+11 5.7742e+09 

5 3.7495e+14 3.4303e+11 5.6723e+09 

6 3.7550e+14 3.4394e+11 5.6812e+09 

7 3.7652e+14 3.4473e+11 5.7443e+09 

8 3.7499e+14 3.4343e+11 5.7880e+09 

9 3.7441e+14 3.4221e+11 5.6980e+09 

 

The evaluation and analysis of the NSGA II algorithm has been conducted in accordance with 

the suggested mathematical model. The NSGA-II algorithm is characterized by several key 

features that facilitate the resolution of multi-objective optimization challenges. One notable 

aspect is the introduction of swarm distance as a substitute for traditional techniques like fitness 

sharing, which employs the binary tournament selection operator. This approach also 

incorporates the caching and archiving of non-dominated solutions derived from earlier phases 

of the algorithm. The non-dominated solutions, which emerge from addressing the multi-

objective optimization problem, are referred to as the Pareto front. In the context of this 

research, two parent chromosomes were merged to create two offspring chromosomes through 

the application of simulated binary crossover operations.  

To evaluate and ascertain the precision of the coding executed in MATLAB software, a small-

scale sample problem is formulated for the proposed algorithms, and the output variables from 

the initial effective solution of the algorithm are presented. Consequently, the problem size is 

established during the preliminary validation, utilizing randomly generated parameters derived 

from a uniform distribution. Following this, the design problem is addressed using meta-
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heuristic algorithms of over 100 iterations, and the comparative indices of multi-objective meta-

heuristic algorithms for each method are identified. Table 6 displays the mean values and 

indices of the results obtained from the application of the NSGA II and epsilon constraint 

algorithms. 

Table 6. Comparative indicators of NSGA -II and modified epsilon constraint 
Index NSGA -II Modified Epsilon  

Computational Time 18.88 46.48 

Average First Objective 

Function 
413964.32 369883.17 

Average Second Objective 

Function 
68622.13 67371.28 

Average Third Objective 

Function 
63285.47 61478.29 

NPS (Number of Pareto 

Answers) 
10 9 

RNI (Dispersion of Answers) 46646.39 49751.28 

SA(Variance) 0.478 0.381 

According to Table 6, the computational time required to solve the sample problem using the 

epsilon algorithm is less extensive compared to that of the NSGA II. Furthermore, NSGA II 

demonstrated superior performance relative to the epsilon constraint in identifying the number 

of efficient solutions. Also, according to the solving result, Figure 4 has been achieved by 

epsilon constraint and NSGAII algorithms. 

 
Figure 4. Result of solving the epsilon constraint and NSGAII 

As it is stated, the solution time of the epsilon constraint algorithm in large dimensions has lost 

its efficiency and the NSGAII algorithm has better efficiency in this regard. Consequently, the 

epsilon algorithm has considerably better performance in small dimensions, and the NSGAII 

algorithm is more efficient in larger scales. Performance analyses of two algorithms in large 
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dimensions are presented in this part based on the evaluation of the pareto front in assessing the 

dimensions of the research problem. 

In this part, first, the deterministic model was solved classically, and then the deterministic and 

stable model was solved using the epsilon limit method. Since robust optimization is one of the 

approaches that works exceptionally proficiently in circumstances where there is instability, in 

this inquiry, the instability of the issue has been examined by applying the robust optimization 

approach. Classical optimization methods ignore data uncertainty and solve the problem as if 

the nominal data or our guesses are the same as the real data. One of the most important 

problems of classical optimization models is the assumption of data certainty in optimization 

problems. However, in a wide range of real-world problems, available data are uncertain and 

imprecise. To produce its products, Mihan company has five raw material suppliers, three 

production locations, four distribution centers (warehouses) and five customer markets. The 

required number of raw materials 1, 2, 3, 4, and 5 are 5, 2, 7, 12, and 6 units, respectively. Final 

products can be produced in all three production plants and can be transferred to all four 

distribution centers. In this case study, supply chain planning is done for a period of 5 years. 

Other required data were explained in the previous sections. 

After solving the model, in the first part, Table 7 shows the suppliers that were selected for the 

raw material. The second part of Table 7 states which distribution centers should keep the 

product in the warehouse during which periods. It can be seen that only warehouse 1 needs to 

be open in all five time periods and store the final product, and retaining and using other 

warehouses is not economically justified. The third part of the Table 7 shows how much the 

optimal amount of production of each production line of the factory should be in different 

periods of time. Although the production outputs of factory lines remain numerically consistent 

across all periods, this pattern reflects the optimization model’s preference for a steady 

production rate to reduce start-up/shutdown costs, ensure freshness, and stabilize supply to 

distribution centers. Inventory and supplier selection, however, vary across periods in response 

to dynamic constraints, illustrating adaptive behavior within a consistent production strategy. 

 

Table 7. Selection of raw material suppliers, operational plan of distribution centers and 

production lines 

Concurrent with the ideal sum of production line generation within the time horizon of 12 

months, additionally the parameter, the sum of generation capacity in completely different 

periods, is concurrent with the primary portion of Table 8. The optimal production value is 

given in the second part of Table 8. Also, production line 3, which has the lowest amount of 

production compared to the other two production lines, has most of the excess production to 

meet the unmet demand, the values of which are shown in the third part of Table 8. In other 

words, changing the goal of these values is the same as changing the amount of production. 
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1 -  *  *  *  *  *  *  * 5584 5867 4169 

2  *  *  *  *  * - - - 5584 5867 4169 

3 -  *  *  *  * - - - 5584 5867 4169 

4 -  *  * -  *  * - - 5584 5867 4169 

5 -  *  *  *  * - -  * 5584 5867 4169 

6 -  *  *  *  *  *  *  * 5584 5867 4169 

7  *  *  *  *  * - - - 5584 5867 4169 

8 -  *  *  *  * - - - 5584 5867 4169 

9 -  *  * -  *  * - - 5584 5867 4169 
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Table 8 shows the percentage of unmet demand in all markets in all periods assuming the 

priority of the economic function. 

 

Table 8. Percentage of unmet demand 

period 
market (customer)  

1 2 3 4 5 

1 3.027 0.027 0.027 1.027 0.027 

2 2.027 0.027 0.027 0.027 0.027 

3 2.027 1.027 1.027 0.027 0.027 

4 3.027 2.027 1.027 0.027 0.027 

5 4.027 0.027 0.027 0.027 0.027 

6 4.027 1.027 1.027 0.027 1.027 

7 4.027 0.027 0.027 0.027 0.027 

8 2.027 0.027 0.027 0.027 0.027 

9 3.027 0.027 0.027 0.027 0.027 

10 3.027 0.027 0.027 0.027 0.027 

11 3.027 0.027 0.027 0.027 0.027 

12 3.027 1.027 0.027 0.027 1.027 

 

Epsilon constraint strategy was also utilized for the case study based on Table 9. The first 

problem is selected in the proposed models to provide the answers to the pareto front  formed 

in each model. 

 

Table 9. Lexicography consequences of definite and firm problems 
3rd Target Value 2nd Target Value First Target Value T arget Type Target Functions Question 

4.635E+09 4.633E+09 4.541E+09 minimizing first target 

Definitive Question 4.452E+09 4.319E+09 4.145E+09 minimizing second target 

2.443E+05 2.329E+05 2.502E+05 maximizing third target 

4.766E+09 4.766E+09 4.585E+09 minimizing first target 

Uncertainty 0.1 4.820E+09 4.795E+09 4.352E+09 minimizing secind target 

2.543E+05 2.429E+05 2.402E+05 maximizing third target 

The subsequent section delineates the sub-objective function (specifically the second and third 

objective functions) into five distinct intervals. The findings for breakpoints for the second 

target function transferred to the constraint (values of epsilons) are presented in Table 10. 

 

Table 10. Epsilon values obtained for classical and firm problems 

failiure point 
Objective 

function 
Problem 

6 5 4 3 2 1   

2.542E+10 2.355E+09 2.146E+09 
1.945E+ 

10 
2.315E+09 2.142E+09 2 classic problem 

3.354E+09 2.841E+09 3.215E+09 
2.954E+ 

09 
2.655E+09 2.365E+09 2 

robust uncertainty   

0.1 

240945 241064 214048 256063 246338 241063 3 classic problem 
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failiure point 
Objective 

function 
Problem 

6 5 4 3 2 1   

210955 20664 236074 214957 241047 233637 3 
robust uncertainty   

0.1 

In the last step, the problem is solved by placing the obtained values after applying the epsilon 

constraint and the obtained values for 5 Pareto fronts, as presented in Table 11. 

 

Table 11. Optimal pareto solutions for the mathematical model of the problem 
robust uncertainty  0.1 The classic problem 

pareto optimal answer 
Target tree. Target two. Target one. Target tree. Target two. Target one. 

214045 3.956E+09 3.654E+09 253617 4.125E+09 3.214E+09 1 

223028 4.124E+09 3.766E+09 263644 3.954E+09 3.365E+09 2 

214043 4.137E+09 3.954E+09 264948 4.111E+09 3.457E+09 3 

234617 4.359E+09 3.855E+09 269333 4.232E+09 3.342E+09 4 

214046 4.563E+09 4.124E+09 283615 4.355E+09 3.459E+09 5 

 

5. FURTHER DISCUSSION: The findings of this study highlight the distinct advantages and 

limitations of the NSGA-II and modified epsilon constraint algorithms in addressing multi-

objective optimization challenges within perishable product supply chains. NSGA-II’s ability 

to explore a vast search space efficiently positions it as a superior choice for larger and more 

complex problem dimensions. It achieves higher computational efficiency and diversity in 

Pareto-optimal solutions, as evinced by its better performance across all three objective 

functions and a larger number of Pareto solutions. However, the epsilon constraint algorithm 

demonstrated exceptional precision and solution quality for smaller-scale problems, 

showcasing its utility in scenarios where accuracy and tightly clustered solutions are prioritized. 

The computational trade-offs observed between the two algorithms suggest that problem scale 

and complexity play pivotal roles in determining the ideal optimization approach. 

The case study of Mihan Company underscores the practical implications of using these 

optimization methods in real-world supply chain settings. By analyzing the raw material 

suppliers, production allocations, and warehouse operations, the study demonstrates the 

efficacy of the proposed models in minimizing costs, reducing environmental impact, and 

ensuring efficient resource utilization. The unmet demand analysis reveals critical insights into 

how supply chain decisions can address customer market priorities while balancing economic, 

environmental, and social sustainability metrics. Furthermore, the robust optimization approach 

used in NSGA-II proved invaluable in handling uncertainties, which are common in supply 

chains, particularly for perishable products like dairy and pharmaceuticals. 

This paper examined two case studies. Initially, twelve scenarios were established for the 

proposed model in the first phase. Subsequently, five products from the drug case study were 

evaluated using the epsilon constraint method, recognized as an effective strategy for 

addressing multi-objective problems through a classical framework. It was found that the 

epsilon constraint method lacked efficiency when applied to problems with more than seven 

dimensions. Consequently, the NSGAII algorithm was employed for higher-dimensional cases. 

The NSGAII algorithm is designed for multi-objective problems and incorporates binary coding 

for decision variable representation, along with probabilistic cycles for parent selection, 
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facilitating the pursuit of optimal solutions. A comparative analysis was then conducted 

between the NSGAII and epsilon constraint algorithms. 

In the next stage, three dairy products with varying expiration dates were analyzed using both 

the enhanced epsilon-constraint approach and the classical method. The results demonstrate 

that the epsilon-constrained reinforcement approach is effective in large-scale problems and 

leads to greater improvements in the objective function compared to the classical approach. A 

sensitivity analysis was subsequently conducted on three parameters: demand, cost resilience, 

and the level of uncertainty. The results indicated that the outcomes of the proposed model were 

advantageous for both case studies and had a significant impact on the objectives. 

A sensitivity analysis of important and key parameters reveals changes in the objective 

functions of the model. Therefore, considering three crucial parameters – demand, uncertainty 

level, and robustness cost– the problem was solved under various scenarios, and the results 

were examined. To analyze sensitivity on the demand parameter, 15 scenarios were designed, 

incorporating a 25% increase and decrease in demand with five different combinations of 

uncertainty levels. The results are presented in Table 12 and Figure 5 . 

 

Table 12. Parameter sensitivity analysis of demand  

Scenario demand 
degree of 

uncertainty 

Percentage change in 

the first goal 

Percentage change in 

the 2nd goal 

Percentage change in 

the 2nd goal 

1 No Change 0.8 0.0046 0.2202 0.22020 

2 increase 0.7 0.1754 0.0124 0.0124 

3 No Change 0.7 0.0046 0.22020 0.22020 

4 increase 0.76 0.1834 0.097643 0.097643 

5 No Change 0.9 0.0125 -  0.097643 0.097643 

6 decrease 0.9 0.1564 -  0.26580 -  0.26580 -  

7 decrease 0.8 0.17648 0.225 -  0.225 -  

8 decrease 0.7 0.187412 0.803030 0.803030 

9 increase 0.6 0.156941 0.04456 0.04456 

10 No Change 1 0.0046 0.22020 0.22020 

11 increase 0.9 0.17648 0.26580 -  0.26580 -  

12 decrease 0.6 0.17525 0.41250 0.41250 

13 increase 0.7 0.17369 0.014 -  0.014 -  

14 increase 0.9 0.17454 0.1758 0.1758 

15 decrease 1 0.0425 0.04576 0.04576 
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Figure 5. Changes in objective functions relative to different demand parameters 

The subsequent phase involved conducting a sensitivity analysis to examine how variations in 

demand parameters affect the objective functions. Additionally, the analysis focused on the 

impact of changes in the degree of uncertainty on these objective functions. Figure 6 illustrates 

that, as the uncertainty degree increases, the objective functions decrease linearly 

simultaneously. Random probabilities impact the profitability of the company in uncertain 

scenarios, relative to changes or demand fluctuations. 

 
Figure 6. Changes in objective functions relative to different levels of uncertainty 

Since the cost of robustification represents the incurred cost to the model after considering 

uncertainty (discrepancy between deterministic and non-deterministic objective functions), this 

parameter indicates the amount of error that the model must tolerate in order to approach reality 

while accounting for uncertainty. To assess the cost of robustification, 5 problems in various 

dimensions have been designed in an ascending manner, and the values of the first, second, and 

third objective functions have been calculated in both deterministic and non-deterministic 

scenarios.  

A comparative analysis of recent studies highlights the alignment and advancement of the 

present model. For instance, Kumar and Agrawal (2024) achieved an 88.4% classification 

accuracy using CNN for tomato supply chains, significantly enhancing product grading and 

loss reduction at early supply chain stages. While our model does not utilize image processing, 

it emphasizes production and routing optimization—achieving over a 25% reduction in 

expiration-related waste, consistent with the 28.78% food loss reduction reported by Kumar et 

al. (2025). Furthermore, Huang et al. (2024) showed that REM-supported logistics planning 

can reduce operation costs by 9%, while our hybrid supply-distribution design achieves similar 
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economic efficiencies through multi-objective integration. Additionally, the proposed 

formulation supports social dimensions such as job security and accident reduction, 

contributing a multi-layered sustainability perspective absent in earlier linear or mono-objective 

models (e.g., Souri & Ghomi, 2025; Komijani & Sajadieh, 2024). This comparison confirms 

that our work contributes to the literature by offering a more integrated, resilient, and socially 

sensitive supply chain optimization framework. 

The comparative analysis and case study results provide a solid foundation for future research 

in sustainable supply chain optimization. Leveraging hybrid methodologies that combine the 

computational speed of NSGA-II with the precision of epsilon constraint methods could offer 

more balanced and versatile solutions. Additionally, extending the application of these 

algorithms to other industries with significant perishability challenges, such as fisheries or floral 

supply chains, could provide valuable insights. Moreover, integrating advanced technologies 

such as machine learning for dynamic data-driven decision-making and expanding the models 

to include circular economy principles would further enhance the sustainability and resilience 

of supply chains. These advancements could address broader global challenges, such as 

reducing waste, lowering carbon footprints, and ensuring equitable access to essential goods. 

6 CONCLUSIONS: The financial difficulties encountered by Iranian enterprises, coupled with 

associated environmental shortcomings, necessitate a comprehensive consideration of these 

elements across multiple facets of business design. Historically, the focus has predominantly 

been on financial and economic aspects; however, in recent decades, the emergence of the 

concept of sustainability—emphasizing the importance of environmental considerations—has 

gained prominence in response to escalating environmental challenges, particularly heightened 

pollution levels. Furthermore, detailed attention to the social aspects that neglecting them at a 

supply chain level can lead to significant damages throughout the chain, especially in 

developing countries, adversely affects business partners. The design of supply chain networks 

has garnered significant interest from scholars in recent times. The uncertainty and presence of 

ambiguity in the supply chain of these products are considered inseparable. As a result, the 

sensitivity of work increases in completing this supply chain. Expiration and criticality must 

always be considered in this process. 

In this regard, one of the most important aspects related to expirable goods is the supply chain 

of expirable items, including food and medicine. The raw materials and products within these 

two groups are highly susceptible to expiration and have a short lifespan. Also, the production 

and consumption of such products have significant impacts on the environment and are among 

the most polluted industries. This study addresses the critical and sensitive nature of supply 

chain design for perishable goods, specifically within the dairy and pharmaceutical sectors. It 

proposes a multi-objective mathematical model that encompasses three primary objectives. The 

first objective is economic in nature, aiming to minimize total costs associated with the supply 

chain. The second objective seeks to mitigate environmental pollution by analyzing emissions 

and fuel consumption. The third objective pertains to social sustainability, which is essential 

for maintaining a resilient supply chain. To effectively integrate sustainability dimensions, 

social indicators were identified and incorporated into the model through the fuzzy delphi 

method, drawing on expert insights. The social objective is framed to maximize the function 

while accounting for uncertainties inherent in the problem and certain model parameters. To 

address these complexities, a robust optimization strategy, along with an enhanced epsilon-

constraint method, has been utilized for solving the multi-objective mathematical models. 

The durability of products significantly influences supply chain expenditures, with enhanced 

product longevity contributing to lower costs within the supply chain. It is recommended that 
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managers prioritize the development of products with extended lifespans, as this approach not 

only fosters social benefits and mitigates environmental degradation but also promotes 

economic advancement within the sector. When examining two case studies, it is essential to 

consider the reliability of the model employed. Nonetheless, the structural characteristics of the 

supply chains and their associated uncertainty parameters should closely resemble those 

explored in this study. Consequently, supply chains can adapt their proposed frameworks and 

methodologies to assess their economic, environmental, and social outcomes. The utilization of 

robust models, alongside the management of uncertainties in critical parameters, equips 

managers with the agility needed to navigate unpredictable financial conditions in unfamiliar 

markets, optimize the flow of materials during production, and sustain demand in a competitive 

landscape. 

The analysis findings indicate that social responsibility in companies is often overlooked. In 

this study, in addition to proposing an idea for measuring and achieving it within the company, 

social criteria relevant to companies producing vulnerable products have been evaluated and 

considered in the modeling. It is advisable for managers and decision-makers to take into 

account the unpredictable lifespan of perishable goods when designing supply chain networks, 

particularly for dairy and pharmaceutical items. It is also important to consider environmental 

risk factors, including fluctuations in exchange rates and inflation, as these can significantly 

affect supply chain profitability in light of the prevailing economic conditions. Embracing 

uncertainty can enhance managerial control over long-term production and profitability. 

Furthermore, it is suggested to explore alternative methods that address uncertainty and to 

compare their outcomes with the approach proposed in this study. Given the breadth of the 

concept of sustainability, it is necessary to incorporate sustainability concepts into 

mathematical modeling for improvement and consideration of all aspects of sustainability. 

Additionally, other environmental and social impacts, such as employee and supplier training 

on safety and health issues, accident rates within the company, and non-discriminatory hiring, 

can be taken into account in decision-making. 

Researchers can evaluate the influence of sanctions on decision-making processes and their 

specific effects on each variable under investigation, taking into account the associated risks. It 

is advisable for managers and decision-makers to opt for vehicles that produce lower levels of 

environmental pollution, as the strategic placement of facilities can lead to a notable decrease 

in environmental impact. Additionally, the costs associated with the supply chain may be 

diminished through the implementation of recycling initiatives, prompting managers to 

prioritize these operations in light of elevated production expenses. The primary limitations of 

this study stem from the absence of a dedicated database for transportation costs, necessitating 

the reliance on driver assessments for cost estimation, as well as the demand estimation based 

on expert evaluations from the case study. Moreover, the study faced a lack of timely access to 

information and significant companies’ refusal to provide information about their activities. 

6.1. Managerial implementation: The insights derived from this study provide actionable 

strategies for supply chain managers, particularly in industries dealing with perishable products 

such as dairy and pharmaceuticals. By leveraging the NSGA-II algorithm, managers can 

efficiently navigate the complexities of large-scale supply chains, balancing cost efficiency, 

environmental impact, and service levels. This method offers the flexibility to handle 

uncertainties in supply chain parameters, allowing for real-time adjustments to production 

schedules, supplier selection, and inventory management. On the other hand, the modified 

epsilon constraint algorithm can be applied to smaller-scale problems or segments of the supply 

chain requiring high precision, such as optimizing warehouse operations or distribution routes. 

Managers can implement these tools to design robust and sustainable supply chains, reducing 
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waste, improving delivery timelines, and enhancing customer satisfaction. These models also 

support strategic decision-making by identifying trade-offs between competing objectives, 

enabling managers to align supply chain performance with organizational sustainability goals. 

6.2. Theoretical implications: This study makes a substantial contribution to the theoretical 

framework of sustainable supply chain optimization by combining robust optimization methods 

with multi-objective decision-making approaches. It demonstrates the adaptability of the 

NSGA-II and epsilon constraint algorithms in addressing the unique challenges of perishability, 

uncertainty, and sustainability in supply chains. The study enriches existing literature by 

combining economic, environmental, and social dimensions into a unified optimization model, 

emphasizing the importance of addressing social sustainability metrics often overlooked in 

supply chain research. Furthermore, it introduces a comparative evaluation of meta-heuristic 

and constraint-based methods, offering a nuanced understanding of their applicability in various 

contexts. These theoretical contributions pave the way for future studies to explore hybrid 

algorithms, integrate advanced data analytics, and extend the principles established in this study 

to broader supply chain scenarios, thereby advancing both the science and practice of 

sustainable supply chain management. 
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