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Abstract 

In this paper, we examine how a demand data aggregation affects the consumption of 

computational time in sporadic demand inventory control based on a past stock movement 

simulation (PSMS). PSMS represents a data-driven approach, which instead of estimating order 

lead time demand with help of a forecasting method rather focuses on a combinatorial 

optimization using an evolution of a replenishment process over a time. We simulate an all 

combinations search, a local search and modified local search together with (s, S) inventory 

control policy and a demand data aggregation ranging from 1 to 40 days using real daily demand 

data for 12,374 spare car parts covering a one-year period. The outputs from PSMS prove that 

an increasing data aggregation significantly shortens the time of searching for an s, S 

combination, ensuring the optimal trade-off between the fill rate and holding and ordering costs. 

However, the level of aggregation has to be set carefully, because once the positive effect of 

the aggregation is depleted, holding and ordering costs tend to increase rapidly according to 

growing average inventory. Acceleration through the data aggregation brings PSMS nearer to 

applications in extensive supply chain management real life tasks dealing with inventory control 

of products with sporadic demand. 
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1 INTRODUCTION 

Supply chain inventory control is a multifaceted and complex area that requires the integration 

of various optimization techniques, technologies, and risk management strategies to ensure 

efficient and cost-effective inventory management across the supply chain. As the demand in 

supply chains inherently fluctuates there is a high potential for a bullwhip effect to reduce the 

competitiveness of supply chains globally (Trapero & Pedregal, 2016). A bullwhip effect refers 

to the amplification of demand variability as information in the form of orders moving from 

lower echelons to higher echelons of the supply chain. It is driven by various factors, including 

demand signal processing, order batching and price variations (Lee et al., 2004). Moreover, 

several authors have examined different demand forecasting techniques and their impact on 

demand variability and the subsequent bullwhip effect (see, e.g., Ma & Ma, 2013; Michna et 

al., 2020; Yuan et al., 2020).  

This phenomenon is also evident in the parts after sales market, also known as the 

aftermarket. The aftermarket encompasses a wide range of activities and services related to the 

sale of spare parts, maintenance, and customer service after the initial sale of a product. It is a 

strategic tool used in various industries to enhance sales, revenue, and profit (Kurata & Nam, 

2013). In the automotive industry, the aftermarket is particularly profitable and crucial for 

maintaining an ongoing relationship with customers, as it includes the provision of spare parts, 

customer service, and accessories sales (Eslava et al., 2020). After-sales service is also an 

integral part of marketing activities, contributing to customer satisfaction and loyalty (Peng et 
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al., 2020). The after sales market refers to markets for complementary goods and services such 

as maintenance, upgrades, and replacement parts used in conjunction with durable goods, 

emphasizing the interconnected nature of the aftermarket with the primary product market 

(Domazet & Stošić, 2018). Furthermore, the aftermarket is a critical component of supply 

networks, providing spare parts to fulfil after-sales commitments and contributing to the overall 

reliability of the supply chain (Rezapour et al., 2017). In the automotive industry, the 

aftermarket serves as a principal approach for enterprises to achieve more profits, with spare 

part logistics management being a crucial area of research and development (Wankhade & 

Kundu, 2020; Li, 2015). In many cases, aftermarket profits surpass those from selling the 

product itself, highlighting its significance in overall industry margins (Atefi et al., 2020). The 

aftermarket also presents challenges, such as demand forecasting influenced by economic 

factors, customer preferences, and environmental conditions (Chen et al., 2010). Moreover, the 

use of big data and product-in-use data has the potential to impact aftermarket demand planning 

and enhance aftermarket supply chain operations (Andersson & Jönsson, 2018). 

For many products appearing in the aftersales market, as well as for parts used in 

maintaining a production equipment to operate smoothly, a typical demand pattern is called 

sporadic demand (Fan et al., 2023). Sporadic demand is characteristic by a frequent occurrence 

of zero demand periods as well as by a high variability of nonzero demand (Yuna et al., 2023). 

Single exponential smoothing-based parametric time series forecasting is regarded as a 

mainstream method in the scientific literature. With the aid of a time-series forecasting 

technique, it is necessary to estimate the mean and variance of lead time demand. These 

characteristics are then used as input to stock management, which typically aims to achieve the 

minimal inventory costs while reaching the required service level. However, the primary 

limitations of parametric techniques lie in their reliance on a predetermined demand distribution 

and the view that demand forecasting and inventory management are distinct processes 

(Huskova & Dyntar, 2023). That creates a research gap for novel nonparametric approaches to 

be developed, encompassing, for example, bootstrapping or simulation via optimization. In this 

paper, we further develop the original idea of past stock movement simulation (PSMS) and 

combine this technique with a data aggregation. While in the parametric time series forecasting 

the data aggregation is originally applied to reduce variability in optimization via PSMS, we 

rather see the potential to accelerate this modelling approach and to use the time savings to 

reach additional economic efficiency through inventory costs reduction. This additional 

efficiency can significantly enhance the competitive advantage of companies involved, for 

example, in spare parts logistics. 

The rest of this paper in organized as follows: In section 2, we map the traditional 

parametric methods used for sporadic demand forecasting and inventory control, and we 

compare them to emerging non parametric approaches. In section 3, we summarize basic 

features of simulated demand data, and we show how the aggregation affects these features, 

including a modification of order lead times. We also describe PSMS of (s, S) inventory control 

policy, including a flowchart, and provide information on the organization of simulation 

experiments. Then, in section 4, we present the outputs from simulation experiments, and we 

discuss the benefits and drawbacks of combining demand data aggregation with PSMS. Finally, 

in the last section, we conclude. 

2 THEORETICAL BACKGROUND 

In the literature, estimating mean and variance of lead time demand with the help of a time-

series forecasting method is usually considered to be an input to inventory control aimed at 

reaching a required service level or minimizing inventory costs (Pinçe et al., 2021). The 

irregular and erratic nature of sporadic demand makes time-series forecasting hard, and together 

with the development of appropriate forecasting techniques leads to the creation of strategies 
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improving forecasting and inventory control performance. These strategies represent mainly 

the adoption of demand classification schemes (Boylan et al., 2008) and a demand data 

aggregation (Li & Lim, 2018). The demand data aggregation includes, for example, an 

aggregation of daily demand data for weeks or months (Willemain et al., 1994), temporal 

aggregation-disaggregation frameworks such as ADIDA (Spithourakis et al., 2014) or inverse 

ADIDA (Petropoulos et al., 2016) and hierarchical forecasting (Rehman et al., 2023). 

In this paper, we focus on a non-overlapping demand data aggregation (Babai et al., 

2012), which reduces the number of zero demand periods and the demand variability through 

the grouping together of daily demands into more extensive time intervals. Based on Rostami-

Tabar et al. (2023), this approach increases the performance of parametric forecasting 

techniques that are usually used to estimate the demand over a lead time period. Among these 

techniques, Croston’s method (Croston, 1972) and its modifications (see, e.g., Levén & 

Segerstedt, 2007; Boylan & Syntetos, 2007) are considered to outperform traditional moving 

average or exponential smoothing by incorporating the occurrence of zero demand periods into 

demand forecasts, making them smoother, with less error variance, and therefore more stock 

friendly (Boylan & Syntetos, 2010). As the parametric approaches based on single exponential 

smoothing are easy to update, they have become an integral part of commercial software 

developed for sporadic demand forecasting and inventory control. 

On the other hand, there are some disadvantages of parametric forecasting methods, 

including mainly an assumption on a standard demand distribution that supports the 

development of more data driven and assumptions free non-parametric techniques (Huskova & 

Dyntar, 2022). These techniques represent bootstrapping (see, e.g., Hasni et al., 2019a, 2019b), 

an empirical method (see, e.g., Van Wingerden et al., 2014; Zhu et al., 2017) and also recently 

applications of neural networks to learn demand patterns directly from the data (see, e.g., Guo 

et al., 2017; Abbasimehr et al., 2020; Lei et al., 2023; Mendizabal et al., 2023; Shafi et al., 2023; 

Belmiro & Oktariani, 2024). In our opinion, however, the major problem with both parametric 

and non-parametric approaches that focus on an estimation of the demand during an order lead 

time period is that they usually perceive demand forecasting and inventory control to be two 

separated stages. More precisely, when speaking about sporadic demand, many scientific 

studies  have compared the performance of forecasting methods based on a forecast accuracy 

measure, but the number of studies measuring a forecasting method’s impact on inventory 

performance is surprisingly low (Pinçe et al., 2021). Moreover, a forecasting method that for a 

certain time series emerges to be the best, for example, in terms of root mean squared error, is 

not necessarily the best when either a different type of forecast error is applied or when the 

demand during order lead time period based on this method is used in a selected inventory 

control policy aimed at optimizing the trade-off between holding and ordering costs and a 

service level. 

Dyntar and Kemrova (2011) proposed an alternative combinatorial approach to 

inventory control of products with sporadic demand that, instead of estimating order lead time 

demand, rather focuses on a simulation of replenishment process as it evolves over time. In 

their data-driven past stock movement simulation (PSMS), a period is separated into time 

intervals of the same length, and a demanded quantity for each interval is assigned based either 

on historic real demand data or data coming from a generation procedure. For each interval, 

there are three events such as a replenishment, a demand satisfaction directly from available 

inventory, and an ordering to be simulated. The ordering is controlled by a selected inventory 

control policy involving continuous or periodic review and constant or variable order quantity. 

In-depth discretization of time and the repetitive run of PSMS for all combinations of controlled 

variables lead to the optimal trade-off curve and surely outperform statistical forecasting 

techniques as well as other nonparametric approaches that determine order lead time demand 

independently. However, too-detailed discretization in PSMS leads to the excessive 
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consumption of computational time (Huskova & Dyntar, 2023). Benefiting from the drawbacks 

of linear regression and bootstrapping when dealing with sporadic demand (Ye et al., 2022), 

Huskova and Dyntar (2023) suggest accelerating the original PSMS by bounding the searched 

solution space with a minimal and a maximal reorder point (i.e., the local search). When 

simulating continuous-review, fixed-order quantity inventory control policy using randomly 

generated sporadic demand data, the local search brings significant savings of the consumption 

of computational time while maintaining a decent ability to reach the best possible holding and 

ordering costs. 

In this paper, we accelerate PSMS in a different way. The goal is to make it more 

suitable for applications in large-scale, real-life problems. Thus, we examine how a different 

level of the demand data aggregation affects both the consumption of computational time and 

the trade-off between a service level and total holding and ordering costs. We simulate one-

year real-demand data for 12,374 items provided by a distributor of spare car parts operating at 

a local aftersales market in the Czech Republic. For each item, we simulate an all combinations 

search (AC), local search (LS) and modified local search (MLS), together with reorder point 

(s), order-up-to-level (S) inventory control policy [i.e., (s, S)] and a demand data aggregation 

ranging from 1 (i.e., no aggregation) to 40 days. We propose MLS in a way to further 

underestimate the minimal reorder point obtained with linear regression, ensuring an additional 

improvement of holding and ordering costs. This further underestimation includes 10, 50 and 

90 % off the LS minimal reorder point. 

3 RESEARCH OBJECTIVE, METHODOLOGY AND DATA 

3.1 Demand data aggregation 

Apart from daily demand observations for 12,374 items covering a one-year period, the original 

data set consists of purchasing prices of items ranging from 8 to 124 €/piece and lead times 

ranging from 2 to 45 days. For each item, with respect to the lead time range, we perform 8 

different levels of non-overlapping demand data aggregation > 1 day that ranges from 5 to 40 

days with a regular step equal to 5 days. Then, based on Syntetos et al. (2005), we calculate, 

for each level of aggregation, the average demand interval of kth item (ADI) using Eq. 1: 

𝐴𝐷𝐼 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 𝑖𝑛 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 𝑧𝑒𝑟𝑜 𝑑𝑒𝑚𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 𝑖𝑛 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝑡𝑖𝑚𝑒𝑠𝑒𝑟𝑖𝑒𝑠
 (1), 

where number of intervals in aggregated time series is calculated as the nearest rounded up 

integer of 
365

𝐿𝑒𝑣𝑒𝑙 𝑜𝑓 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
 and for non-zero demands in aggregated time series also the 

squared coefficient of variation (CV2) using Eq. 2: 

𝐶𝑉2  =  (
𝐷𝑒𝑚𝑎𝑛𝑑 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑚𝑎𝑛𝑑
)

2

 (2). 

We summarize basic characteristics of original and aggregated demand data including minimal 

(St,min) and maximal non-zero demand per simulated time interval (St,max) in Table 1: 

Tab. 1 - Basic characteristics of original and aggregated demand data 

Level of aggregation [days] Average ADI Average CV2 St,min [pieces] St,max [pieces] 

1 4.94 0.31 1 13 

5 1.51 0.37 1 55 



 

https://doi.org/10.7441/joc.2025.02.04  92 

 

10 1.17 0.31 1 92 

15 1.08 0.27 1 99 

20 1.05 0.23 1 137 

25 1.02 0.19 1 156 

30 1.03 0.19 1 174 

35 1.01 0.16 1 186 

40 1.03 0.18 1 196 

Based on a recommended ADI cut-off value equal to 0.49 and CV2 cut-off value equal to 1.32, 

we employ a demand classification scheme proposed by Syntetos et al. (2005) to sort items into 

4 groups: smooth, erratic, intermittent and lumpy demand (see Table 2): 

Tab. 2 - Items assortment based on the demand classification scheme proposed by Syntetos et 

al. (2005) 

  Number of items in a group 

Level of aggregation [days]/Demand pattern Smooth Intermittent Erratic Lumpy 

1 0 10 561 0 1 813 

5 6 090 4 199 765 1 320 

10 9 415 1 671 702 586 

15 10 883 597 675 219 

20 11 428 341 511 94 

25 11 796 143 404 31 

30 11 936 53 374 11 

35 12 052 41 270 11 

40 12 135 23 211 5 

As the Level of aggregation increases, we calculate modified lead time of kth item (MLTk) using 

Eq. 3 and subsequent rounding up to the nearest integer. 

𝑀𝐿𝑇𝑘  =  
𝐿𝑇𝑘

𝐿𝑒𝑣𝑒𝑙 𝑜𝑓 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
 (3), 

where LTk represents the lead time of kth item in the original non-aggregated dataset. We further 

analyse modified lead times in term of percentiles and record the results in Table 3: 

Tab. 3 - Modified lead times percentiles 

Level of aggregation [days]/Percentile [%] 10 20 30 40 50 60 70 80 90 100 

1 4 6 8 9 11 14 21 24 29 45 

5 1 2 2 2 3 3 5 5 6 9 

10 1 1 1 1 2 2 3 3 3 5 

15 1 1 1 1 1 1 2 2 2 3 

20 1 1 1 1 1 1 2 2 2 3 

25 1 1 1 1 1 1 1 1 2 2 

30 1 1 1 1 1 1 1 1 1 2 

35 1 1 1 1 1 1 1 1 1 2 

40 1 1 1 1 1 1 1 1 1 2 
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3.2 Past stock movement simulation 

We continue with loading demand data, purchasing prices (pk) and modified lead times to PSMS 

of (s, S) inventory policy. Together with the data related to an individual item, we use holding 

costs (ch), ordering costs (co) and required fill rate (FR) as the parameters that are common for 

all items (see Table 4): 

Tab. 4 - Parameters of simulation 

ch 34 % from average inventory in € per 1 year 

co 27 € per 1 order 

FR 95 % 

In PSMS, a backordering as well as a placement of more than one order during the lead time is 

forbidden for an individual item. On the other hand, a partial demand satisfaction in a simulated 

interval right from an available inventory is enabled, which means that an occurrence of a 

missing quantity is written down, becoming a part of the calculation of achieved fill rate (AFR) 

for a simulated combination of s, S (see Eq. 4): 

𝐴𝐹𝑅 = 1 −  
𝑇𝑜𝑡𝑎𝑙 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑
 (4), 

where Total demand in t = 1,2…..T simulated time intervals for kth item is calculated as: 

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 = ∑ 𝑆𝑡

𝑇

𝑡=1

 (5), 

where St represents a demand in a simulated interval. In the case that AFR ≥ FR for a simulated 

combination of s, S, total holding and ordering costs (Ct) are calculated with help of Eq. 6: 

𝐶𝑡 = 𝐴𝐼 ∙ 𝑝𝑘 ∙ 𝑐ℎ + 𝑁𝑜 ∙ 𝑐𝑜 (6), 

where AI represents average inventory and No number of orders. As we do not want to commit 

a stock out in the very beginning of the simulation run, we set an initial inventory (II) for kth 

item according to Eq. 7: 

𝐼𝐼 = ∑ 𝑆𝑡

𝑀𝐿𝑇𝑘+1

𝑡=1

 (7). 

The flowchart of the simulation of (s, S) inventory policy for kth item displays is in Figure 1: 
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Fig. 1 - Flowchart of the simulation model of (s, S) inventory policy for kth item 

3.3 Simulation experiments 

Simulation experiments are organized as follows: First, we simulate AC + PSMS and LS + 

PSMS for each item with 9 scenarios differing in demand data aggregation. In simulation 

experiments, we examine only such s, S combinations where S > s. We compare AC + PSMS 

and LS + PSMS in terms of the consumption of computational time and the trade-off between 

the fill rate and the minimal holding and ordering costs (Ctbest,k). Then, we simulate MLS + 

PSMS for each item, with 9 scenarios differing in demand data aggregation and 3 arrangements 

of LS minimal reorder point decrease. Finally, we compare MLS + PSMS and LS + PSMS with 

AC + PSMS again in terms of the consumption of computational time and the difference 

between Ctbest,k. 
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All simulation experiments are performed in MS Excel on a computer with the processor 

Intel Core i7 – 2.8 GHz, 16 GB RAM. To record the consumption of computational time, we 

use the MS Excel function NOW() in the beginning and at the end of the simulation of a 

scenario. 

4 RESULTS AND DISCUSSION 

The consumption of computational time for simulated scenarios of AC + PSMS and LS + PSMS 

is displayed  in Figure 2: 

 

Fig. 2 - Consumption of computational time for different levels of demand data aggregation 

The outputs from simulation experiments prove that an increasing data aggregation 

significantly shortens the time of searching for an s, S combination, ensuring the optimal trade-

off between a fill rate and holding and ordering costs. While for the original data set with no 

aggregation, it takes AC + PSMS almost 8 hours to carry out the simulation of the scenario, in 

case of, for example, monthly aggregated demand data, it lasts only 23 minutes. The outputs 

from simulation experiments also prove that LS + PSMS is significantly faster than AC + PSMS 

mainly for a low level of demand data aggregation. 

However, the decrease in the consumption of the computational time needs to be judged 

in conjunction with the evolution of optimal holding and ordering costs. Thus, based on the 

minimal holding and ordering costs coming from simulation experiments, we calculate total 

minimal holding and ordering costs for each scenario using Eq. 8: 

Σ𝐶𝑡,𝑏𝑒𝑠𝑡  = ∑ 𝐶𝑡𝑏𝑒𝑠𝑡,𝑘

12 374

𝑘=1

 (8). 

These costs for AC + PSMS and LS + PSMS are shown in Figure 3: 
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Fig. 3 - Total minimal holding and ordering costs 

It can be seen in Figure 3 that there is a moderate decrease in total minimal holding and ordering 

costs for the level of aggregation 5, 10 and 15 days, reaching for AC + PSMS the lowest costs 

equal to approx. 6.8 million € compared to 7.2 million € for the original data set with no 

aggregation. For the level of aggregation 20 and 25 days, total minimal holding and ordering 

costs still hold below the value for non-aggregated data, while for the level of aggregation ≥ 30 

days there is a steep increase. The described behaviour of holding and ordering costs is similar 

for AC + PSMS and LS + PSMS, and also AC + PSMS slightly outperforms LS + PSMS in 

terms of holding and ordering costs in each simulated scenario. LS + PSMS find no solution 

for a certain amount of simulated time series (see Table 5) as we use only 100 sampling runs in 

bootstrapping: 

Tab. 5 - Number of simulated items with no solution found by LS + PSMS 

Level of aggregation [days] 1 5 10 15 20 25 30 35 40 

No solution found with LS 8 9 1 2 1 0 0 0 0 

It can be seen in Table 5 that the number of simulated items with no solution found by LS + 

PSMS decreases with an increasing level of aggregation. This is because through the 

aggregation, the demand intermittency decreases (see Tables 1 and 2), which is in accordance 

with findings of Huskova and Dyntar (2023). 

To analyse the evolution of optimal holding and ordering costs closely, we use average 

inventory linked with minimal holding and ordering costs and calculate total average inventory 

for each scenario, using Eq. 9: 

Σ𝐴𝐼𝑏𝑒𝑠𝑡  = ∑ 𝐴𝐼𝐶𝑡𝑏𝑒𝑠𝑡,𝑘

12 374

𝑘=1

 (9). 

Similarly based on the number of orders linked with minimal holding and ordering costs, we 

calculate the total number of orders for each scenario using Eq. 10: 
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Σ𝑁𝑜𝑏𝑒𝑠𝑡  = ∑ 𝑁𝑜𝐶𝑡𝑏𝑒𝑠𝑡,𝑘

12 374

𝑘=1

 (10). 

Total average inventory and total number of orders linked with minimal holding and ordering 

costs for AC + PSMS and LS + PSMS are shown in Figures 4 and 5: 

 

Fig. 4 - Total average inventory linked with minimal holding and ordering costs 

 

Fig. 5 - Total number of orders linked with minimal reached total holding and ordering costs 

The evolution of optimal holding and ordering costs in Figure 3 follows the evolution of total 

average inventory linked with minimal holding and ordering costs in Figure 4 relatively closely. 

This means that holding costs represent the major part of total inventory costs, as the decreasing 
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total number of orders in Figure 5 confirms. To put the evolution of total average inventory into 

context, we refer to the characteristics of aggregated data summarized in Tables 1, 2 and 3. 

More specifically, as long as there is enough potential to reduce demand variability and 

irregularity (see Table 1) and turn intermittent and lumpy demand into something more smooth 

(see Table 2), the simulation handles average inventory successfully until the modified order 

lead times (see Table 3) moving away from originals and covering longer time periods cause 

excessive initial inventory and inventory fulfilling the demand during the order lead time 

period. 

After the LS + PSMS and AC + PSMS results, we also provide outputs for MLS + 

PSMS. Based on Ctbest,k. we calculate cost differences ∆ using Eq. 11: 

∆=
𝐶𝑡𝑏𝑒𝑠𝑡,𝐿𝑆 𝑜𝑟 𝑀𝐿𝑆𝑘

− 𝐶𝑡𝑏𝑒𝑠𝑡,𝐴𝐶𝑘

𝐶𝑡𝑏𝑒𝑠𝑡,𝐴𝐶𝑘

∙ 100 % (11). 

For each level of aggregation and each level of LS minimal reorder point decrease, we calculate 

10 to 100 % ∆ percentiles and put these percentiles together with the number of time series, 

with no solution found by LS to Table 6: 

Tab. 6 - ∆ percentiles for LS + PSMS and MLS + PSMS 

  ∆ percentiles [%]   

Level of 

aggregation 

[days] 

10 20 30 40 50 60 70 80 90 95 100 

LS Min 

Reorder point 

off [%] 

No solution 

found with 

(M)LS 

1 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 1 % 3 % 6 % 41 % 0 8 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 2 % 4 % 36 % 10 8 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 18 % 50 8 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 9 % 90 8 

5 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 2 % 5 % 36 % 0 9 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 3 % 36 % 10 9 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 27 % 50 9 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 27 % 90 9 

10 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 1 % 4 % 42 % 0 1 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 2 % 36 % 10 1 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 29 % 50 1 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 2 % 90 1 

15 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 4 % 43 % 0 2 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 1 % 42 % 10 2 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 29 % 50 2 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 5 % 90 2 

20 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 3 % 66 % 0 1 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 66 % 10 1 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 36 % 50 1 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 8 % 90 1 

25 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 2 % 65 % 0 0 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 65 % 10 0 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 46 % 50 0 
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0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 90 0 

30 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 3 % 55 % 0 0 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 53 % 10 0 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 41 % 50 0 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 2 % 90 0 

35 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 2 % 86 % 0 0 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 84 % 10 0 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 62 % 50 0 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 3 % 90 0 

40 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 4 % 123 % 0 0 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 123 % 10 0 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 59 % 50 0 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 9 % 90 0 

Together with ∆ percentiles, we are also interested in the consumption of computational time 

for LS + PSMS and MLS + PSMS. This consumption is shown in Table 7: 

Tab. 7 - Consumption of computational time for LS + PSMS and MLS + PSMS [min] 

  LS Min Reorder point off [%] 

Level of aggregation [days] 0 10 50 90 

1 38 42 56 71 

5 18 19 23 26 

10 15 15 18 20 

15 14 14 17 18 

20 13 14 16 18 

25 13 14 15 17 

30 13 14 15 16 

35 13 13 15 16 

40 13 13 15 16 

∆ percentiles in Table 6 prove that an extension of reorder point interval with the further 

underestimation of LS minimal reorder point brings improvements in holding and ordering 

costs. For example, when speaking about a level of aggregation equal to 15 days, where AC + 

PSMS reaches absolutely minimal holding and ordering costs for all simulated scenarios, the 

original LS + PSMS reaches these costs only for 90 % of the simulated time series, and ∆ for 

the rest of the simulated items is up to 43 %, while for MLS + PSMS with 90 % off LS minimal 

reorder point, absolutely minimal holding and ordering costs are reached for 95 % simulated 

time series, and ∆ for the rest of simulated items is only up to 5 %. Furthermore, this cost 

improvement is at a reasonable price in terms of additional time consumption because there is 

just a moderate increase in this time from 14 to 18 minutes (see Table 7, level of aggregation 

equal to 15 days, and LS minimum reorder point off equal to 90 %). Besides the relatively stable 

consumption of computational time, MLS + PSMS behaves stably also in terms of number of 

time series for which no solution is found. 

Based on the best-achieved costs and computational time consumption, we summarize 

the relative advantages of three methods within the PSMS framework in Table 8: 

Tab. 8 – Comparison of relative advantages of methods within the PSMS framework 
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Method Costs Computational time 

AC + PSMS minimal maximal 

LS + PSMS 
higher than AC+PSMS; higher than 

MLS+PSMS 

lower than AC+PSMS; lower than 

MLS+PSMS 

MLS + PSMS 
higher than AC+PSMS; lower than 

LS+PSMS 

lower than AC+PSMS; higher than 

LS+PSMS 

As LS+PSMS excels in the consumption of computational time compared to AC+PSMS, this 

opens a possibility to invest some additional time to search for more extensive solution space 

and reach additional cost savings, which is a major idea of MLS+PSMS. 

5 CONCLUSION  

In this paper, we examined how a certain level of demand data aggregation affects the 

performance of sporadic demand inventory control based on a past stock movement simulation 

(PSMS). PSMS represents a data-driven approach that, instead of estimating order lead time 

demand with the help of a forecasting method, rather focuses on a combinatorial optimization 

using an evolution of a replenishment process over a time. We simulate reorder point/order-up-

to-level inventory control policy with the demand data aggregation ranging from 1 to 40 days 

using the real daily demand data for 12,374 car spare parts covering a one year period. For each 

item, we perform PSMS with an all-combinations search, the local search (LS) proposed by 

Huskova and Dyntar (2023), and also with the newly designed modified local search (MLS), 

which further underestimates the minimal reorder point. 

The outputs from the simulation experiments prove the positive impact of demand data 

aggregation on reducing demand variability and frequency of occurrence of zero demand 

periods, leading to the improvement of sporadic demand inventory control. These findings are 

in accordance, for example, with Willemain et al. (1994). Our results also confirm the findings 

presented by Nikolopoulos et al. (2011) that the level of aggregation has to be set carefully 

because too small or too extensive aggregation leads potentially to poor inventory control 

performance. 

Our major contribution is that demand data aggregation combined with PSMS leads to 

the significant reduction of the consumption of computational time, bringing this data-driven 

approach nearer to applications in large scale real life problems dealing with sporadic demand 

inventory control. These savings are reached through the shortening of time series in PSMS as 

well as through the decrease of order lead times in LS and MLS. 

However, we are also aware of some limitations connected with our work. First, while 

our dataset includes 12,374 spare parts, it is based on a single dataset, and its generalizability 

to a broader market remains an open question. Future research should explore whether similar 

findings hold across different industries, product categories, or datasets from multiple 

companies. Additionally, the total one-year demand for items in the simulated data set ranges 

from 14 to 1,391 pieces. In case that this total demand is, for example, a hundred times higher, 

searching through the more extensive solution space definitely requires a more efficient 

approach. There is also space to carry out a detailed sensitivity analysis of lead time and safety 

factor impact on underestimating the minimal reorder point in LS, or to even consider a 

replacement of linear regression in estimating mean and variance of lead time demand with a 

more reliable method.  

Beyond the theoretical implications, our findings have practical significance for supply 

chain management. In industries such as automotive aftermarket services, aerospace, and 

medical equipment, where sporadic demand is common, the proposed approach could help 

companies optimize inventory control while reducing computational costs. For example, a spare 

parts distributor could use demand aggregation strategies to stabilize replenishment planning, 
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minimizing the risk of stockouts while avoiding excessive inventory. Similarly, manufacturers 

dealing with highly variable component demand could integrate PSMS-based approaches to 

enhance their supply chain resilience. These insights highlight the potential for real-world 

applications and encourage further research into practical implementation strategies. 

To successfully integrate this method into inventory management systems, companies 

can adopt PSMS-based decision-making modules into their existing ERP or inventory 

management software, allowing for automated optimization of reorder point. Furthermore, 

collaboration with AI-driven analytics platforms could enhance the efficiency of parameter 

improving in PSMS, ensuring that reorder points and stock levels remain dynamic and 

responsive to changes in demand patterns. 

One possible direction for future research is the integration of artificial intelligence (AI) 

and neural networks into PSMS to enhance inventory optimization. AI-driven heuristics might 

also help to control the solution space more efficiently in large-scale datasets, reducing 

computational demand while maintaining high-quality results. Exploring these advanced 

techniques could further bridge the gap between theoretical inventory control models and 

practical applications in dynamic, high-uncertainty environments. These are the challenges for 

our future work. 
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