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Abstract 

As the global electricity market continues to evolve, day-ahead electricity price forecasting has 

become increasingly important for decision-making among various market entities. However, 

the continuous integration of high proportions of clean energy poses significant challenges for 

accurate day-ahead electricity price predictions. In response, we fully considered the coupling 

relationship between the output characteristics of renewable energy and the multidimensional 

features of electricity prices and proposed a day-ahead electricity price forecasting model based 

on improved complete ensemble empirical mode decomposition with adaptive noise 

(ICEEMDAN) and iTransformer. First, we decompose historical electricity price data using the 

ICEEMDAN method to obtain multidimensional time series data based on intrinsic mode 

functions (IMFs). Second, we leverage the attention mechanism in iTransformer to 

independently predict the multidimensional time-series data containing IMFs and renewable 

energy output, forming a forecasting model suited for the large-scale integration of renewable 

energy in the electricity market. Finally, using historical electricity price and renewable energy 

output data from Spain as a case study, we constructed a simulation model. The results 

demonstrate that the ICEEMDAN-iTransformer model effectively handles noise, nonlinearity, 

and non-smoothness in data following the integration of renewable energy, enabling more 

stable and accurate forecasting results. 
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1 INTRODUCTION 

Electricity prices, serving as the cornerstone economic signals in power markets, exert 

significant influence on the operational decisions of generators, retailers, and end-users, while 

simultaneously shaping macroeconomic stability and power system equilibrium (Darandary et 

al., 2024; Enrich et al., 2024). However, the accelerating global deployment of renewable 

energy has introduced unprecedented challenges to conventional forecasting methodologies, 

primarily due to the inherent stochasticity and intermittency of renewable generation (Özen & 

Yildirim, 2021; Tan et al., 2023). This necessitates the development of adaptive forecasting 

frameworks capable of addressing the complex dynamics induced by high renewable 

penetration. 

Current electricity price forecasting methodologies are typically categorized into day-ahead, 

intraday, and real-time predictions (Chen et al., 2025). Given the dominance of day-ahead 

markets in electricity trading, this paper focuses on day-ahead price forecasting as the critical 

domain for addressing renewable integration challenges. Recent advancements in this field 

have incorporated multidimensional factors such as price volatility analysis (Grothe et al., 
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2023), spatiotemporal correlation modeling (Meng et al., 2024), and underlying predictive 

indicators (Özen & Yildirim, 2021). Notwithstanding these developments, traditional single-

model approaches have proven inadequate for capturing the multi-temporal and spatial 

characteristics of electricity prices, failing to meet the precision requirements of modern power 

markets (Guan et al., 2022; Luo et al., 2024). The proliferation of artificial intelligence has 

revolutionized electricity price prediction, yielding remarkable performance improvements 

(González-Tejero et al., 2023; Méndez-Suárez et al., 2023). For instance, Lehna et al. (2022) 

conducted a comprehensive comparative analysis of four forecasting frameworks in the German 

day-ahead market, demonstrating that hybrid CNN-LSTM architectures and expanded two-

stage multivariate VAR models significantly enhance prediction accuracy. 

Notwithstanding the ongoing evolution in electricity price forecasting research, there exists a 

demonstrable correlation between predictive model efficacy and input variable characteristics, 

underscoring the necessity for stringent feature selection protocols in forecasting frameworks 

(Guo et al., 2025). To address this gap, Pourdaryaei et al. (2024) introduced a novel hybrid 

forecasting framework integrating multi-head attention mechanisms with convolutional neural 

networks (CNNs). Concurrently, a novel feature selection framework was proposed, leveraging 

mutual information theory and neural networks to systematically filter input variables relevant 

to electricity price forecasting. 

While advancements in prediction models and improved data quality have significantly 

enhanced forecasting accuracy, the rising penetration of renewable energy introduces new 

challenges arising from their inherent stochasticity and uncertainty, which may undermine 

predictive reliability. Existing research highlights that transmission system operator (TSO) 

forecasts of total electricity load and variable renewable generation (wind/solar) – critical inputs 

for market operations – are prone to systematic biases. Maciejowska et al. (2021) demonstrated 

that autoregressive modeling techniques can improve these forecasts, enabling preemptive 

market condition anticipation and potentially increasing revenue. This underscores the 

substantial impact of renewable generation data on day-ahead pricing dynamics. Concurrently, 

Davis and Brear (2024) revealed that short-term wind power forecasting errors correlate with 

increased unutilized energy hours and scarcity pricing events, leading to higher system costs 

and market prices. This unintended consequence exacerbates electricity price volatility, reduces 

wind turbine profitability, and marginally increases greenhouse gas emissions. The urgency to 

improve short-term wind forecasting intensifies when variable renewable generation exceeds 

60% of annual electricity demand. 

Addressing the challenges posed by high-penetration renewable energy systems requires 

strategic input variable selection and advanced feature extraction as critical methodological 

priorities. In response, Yao et al. (2020) developed a wind-dominated market forecasting 

framework that integrates multi-domain features with long short-term memory (LSTM) 

networks. This architecture leverages the LSTM’s temporal dependency modeling capabilities 

to improve forecasting accuracy in high-wind scenarios, particularly when incorporating wind 

power-to-load ratios and multi-timescale inputs. Building on this foundation, Yin et al. (2022) 

proposed a singular spectrum analysis (SSA)-LSTM-cross-entropy optimization (CSO) hybrid 

model to decompose historical price data into trend, periodic, and residual components. While 

effective for trend extraction, SSA fails to capture high-dimensional latent features. Xu et al. 

(2024) introduced a variable mode decomposition (VMD)-grey wolf optimization (GWO)-

attention-LSTM framework, demonstrating that VMD contributes most significantly to 

performance. However, VMD’s sensitivity to noise often leads to modal distortion in tariff 

signals. To mitigate this, Chen et al. (2025) integrated local outlier factor (LOF) detection with 

VMD, improving decomposition robustness. More recently, Xu Yue et al. (2024) combined 
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maximum information coefficient (MIC) with ensemble empirical mode decomposition 

(EEMD) and an enhanced informer model to uncover multidimensional latent features, 

achieving state-of-the-art precision. Liu et al. (2024) further advanced EEMD into improved 

complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), 

enabling nonlinear and nonstationary pattern extraction from raw price series. 

Notwithstanding the academic recognition garnered by the aforementioned studies, electricity 

price forecasting under high renewable penetration remains hindered by three fundamental 

challenges: the high-dimensional complexity of historical operational data, the cross-scenario 

generalizability limitations of forecasting models, and the technical barriers in extracting 

discriminative features from stochastic renewable generation dynamics. With the continuous 

advancement of artificial intelligence and computational capabilities, the transformer model has 

emerged as a promising solution due to its parallel processing efficiency, scalability, 

adaptability, and robust generalization capacity. Kaya et al. (2023) pioneered the application of 

a transformer encoder-decoder with self-attention (TEDSE) for electricity price forecasting. 

However, conventional transformer architectures exhibit limitations in multivariate long-term 

time series prediction, yielding suboptimal results (Huang et al., 2023; Nie et al., 2023). To 

address these limitations, Liu et al. (2024) introduced the i-Transformer, which revolutionizes 

architecture design through inverted structural optimization. This innovation preserves the 

model’s inherent strengths while enhancing its ability to process multivariate long-term time 

series data (Zhao et al., 2017). This advancement provides novel opportunities for precise 

electricity price forecasting in large-scale renewable integration scenarios (Ramírez et al., 2024). 

Consequently, this paper introduces an innovative day-ahead electricity price forecasting 

framework that integrates ICEEMDAN with the iTransformer. The contributions of this study 

are threefold: First, we address the nonlinear and nonstationary characteristics of electricity 

price data by applying ICEEMDAN to decompose raw time series into intrinsic mode functions 

(IMFs) (Colominas et al., 2014; Huang et al., 2022). These IMFs effectively capture the 

intrinsic dynamics of price fluctuations, including cyclical patterns and transient shocks (Yang 

et al., 2024; Ghimire et al., 2022). Second, we propose a multivariate correlation analysis using 

the iTransformer architecture to model cross-dimensional dependencies among decomposed 

IMFs and renewable generation data. This approach enables the identification of complex 

spatiotemporal patterns and long-range temporal correlations in electricity prices. Third, we 

develop a serialized prediction framework that forecasts multi-dimensional features of day-

ahead prices by inputting individual IMFs and renewable energy generation data. Predictions 

are aggregated through a weighted summation method to produce the final electricity price 

forecast. To validate the model's efficacy, we conducted comprehensive simulations using the 

2021 Spanish electricity price dataset, comparing our framework against state-of-the-art 

forecasting models. 

The study consists of five sections. Following the introduction, we present the theoretical 

framework in Section II. We then discuss the data in Section III. Section IV presents the results 

of the study and assesses the generalizability and validity of the model. Conclusions come in 

Section V. 

2 THEORETICAL FRAMEWORK 

2.1 Theoretical research process 

This section describes the relevant methods and theories of the proposed day-ahead electricity 

price forecasting framework in a sequential manner. The overall flowchart in this paper is 
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shown in Figure 1. This method achieves accurate day-head electricity prices prediction through 

five key components: (a) Data preprocessing, (b) Model training and optimization, (c) 

Integration of the forecasting values, (d) Evaluation of prediction results, and (e) Model 

comparison and comparative experiments. (f) Model validation techniques. The specific 

workflow is as follows. 

(a) Data preprocessing 

The raw dataset from Valencia, Spain, with day-ahead electricity prices per hour and 11 

renewable energy generation data in 2022, are collected and subjected to data cleaning and 

processing. An adaptive ICEEMDAN decomposition method is used to analyze the non-smooth 

signals generated by day-ahead electricity prices in the raw data, while residual noise and 

spurious modes are addressed. In our work, the original electricity price is decomposed into a 

residual series and 5 relatively stable IMFs, which are denoted by IMF1-IMF5 from high-

frequency to low-frequency. To ensure that potentially useful information is not lost, a residual 

analysis is performed and found that its effect on the prediction results was negligible. 

Therefore, the residual component is chosen to ignore. 

(b) Model training and optimization 

Having discussed the data preprocessing steps, we now turn to the model training and 

optimization process. The residual series is eliminated because it does not contain useful 

information for forecasting. The processed electricity price data as target variate is fed into the 

iTransformer model through layer normalization (see Section 2.2.2 for a detailed introduction 

to iTransformer). Technically, we embed each renewable energy generation time series as 

variate tokens, adopt the attention for multivariate correlations, and employ the feed-forward 

network for series representations, which learn better series-global representations for time 

series forecasting. The model is evaluated based on the convergence of the loss function using 

the validation set, and the optimal model is selected. 

(c) Integration of the forecasting values 

Day-head electricity price is aggregated from the predicted values of IMF1-IMFk and can be 

defined as： 

 1 2
ˆ ˆ ˆ ˆ1 2 kY w IMF w IMF w IMFk=  +  + +                               (1) 

After the ICEEMDAN decomposition, we obtain a series of IMFs  ( 1IMF , 2IMF , ..., IMFk

). When it is necessary to integrate these IMFs  for further analysis or processing, a simple and 

straightforward approach equal weighting is implemented, which means that each IMF  is 

considered to have the same importance and impact in the integration process (Chatterjee & 

Chakraborty, 2024). 

(d) Evaluation of prediction results 

The selected model is applied to the test dataset, and its performance is assessed using three 

evaluation metrics and two-time efficiency values. 

(e) Model comparison and comparative experiments 
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Our proposed model ICEEMDAN-iTransformer is used for multivariate characterization of 

renewable energy generation to predict day-ahead electricity price, and in order to better 

validate the advantages of the model, we choose the former-based model and their invert 

former-based model to compare with iTransformer. For example, Flowformer\Informer\ 

Flashformer as a variant of transformer, mainly concerns the component adaptation, especially 

the attention module for the temporal dependency modeling and the complexity optimization 

on long sequences. Furthermore, Reformer pays more attention to the inherent processing of 

time series, which bring about consistently improved performance. Also, in comparison 

experiment Ⅰ, the prediction of single-target day-ahead electricity prices by iTransformer 

demonstrates the advantages of the model. In comparison experiment Ⅱ, taking into account the 

effect of multivariate renewable energy generation on the single target electricity price 

prediction and make projections, which improves the prediction results of iTransformer. Also 

in experiment Ⅱ, we considered other features such as weather policies and analyzed them. 

(f) Model validation techniques 

Through interpretability analysis, cross-validation, and outlier sensitivity testing, the 

ICEEMDAN-iTransformer model excels in accuracy, probabilistic forecasting, and handling 

extreme price fluctuations, the model proves its reliability and generalizability, making it a 

powerful tool for electricity market participants and grid operators in managing price volatility 

and optimizing energy scheduling. 

2.2 Theoretical Methodology 

2.2.1. ICEEMDAN 

Define y as the original variable to be decomposed, which in this study means the day-ahead 

electricity price. For the residual noise in modes, let ( )M   be the operator which produces the 

local mean of the signal that is applied and let ( )iw  be a realization of white Gaussian noise 

with zero mean and unit variance. For spurious modes, the use of ( )( )ˆ i

kE w  to extract the kth  

mode instead of white noise directly is suggested. Note that   refers to the averaging process. 

A flowchart of this new algorithm can be found in Figure 2. 

First, a set of white Gaussian noise ( )iw  are added to the original day-ahead electricity price 

sequence y , the new sequence ( )iy  constructed is as follows:  

( ) ( )

0
ˆ ( )i iy y E w= +                                                   (2) 

where constants ( )k k kstd R=   are chosen to obtain a desired SNR between the added noise 

and the residue to which the noise is added. And get the first set of residuals as follows: 

( )( )

1

iR M y=                                                   (3) 

Then, the first modal component 1IMF  is calculated: 

1 1d y R= −                                                        (4) 
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Fig. 1 – Workflow of theoretical research 
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continue to add white noise and compute the second set of residuals 
( )

1 1
ˆ ( )iR E w+   using local 

mean decomposition. Calculate the second modal component 2IMF  as follows: 

( )

2 1 2 1 1 1
ˆ( ( ))id R R R M R E w= − = − +                                  (5) 

similarly, the kth  residual 
( )ˆ ( )i

k kR E w+   and modal components IMFk are computed as 

follows: 

( )

1 1 1 1
ˆ( ( ))i

k k k k k kd R R R M R E w− − − −= − = − +                             (6) 

until the end of the computational decomposition, all modes and the number of residuals are 

obtained. Regarding the two problems mentioned above, the ICEEMDAN algorithm proceeds 

are as follows: 

Algorithm 1 ICEEMDAN 

Require: Signal ( )y t , noise amplitude standard deviation sequence ( )i , number 

of decomposition layers N , number of iterations M , intrinsic modal 

functions list imfs . 

1: ▷ Initialize the list of remaining signals ( )res y t=  and intrinsic modal 

functions list []imfs = . 

2: for i  in (1, 1)Range N +  :  

3: ▷ Initialize the noise signal for the first EMD decomposition: 

( ( ( )))* ( )noise randn size y t i=   

_ _signal with noise res noise= +  

4: ▷ Perform the EMD decomposition to get the first IMF:   

1 ( _ _ )imf EMD signal with noise=  

5: for j  in (1, 1)Range M + : 

6: ▷ Calculate the noise for the jth  iteration: 

_ ( ( ( )))* ( )noise j randn size y t i=   

_ _signal j res noise j= +  

7: ▷ EMD decomposition of the signal with added noise. 

_ ( _ )IMFs j EMD signal j=  

8: ▷ Calculate the mean IMF. 

_ ( _ [1])mean imf mean IMFs j=  

9: ▷ Use the average IMF to update the remaining signals 

_res res mean imf= −  

10: ▷ Add the resulting IMFs to the result list. 

. ( _ )imfs append mean imf  

11: Return imfs  

2.2.2 iTransformer 

For day-ahead electricity price long-term series forecasting, we propose an elaborate inverted 

transformer, which adopts the encoder-only architecture of transformer (Vaswani et al., 2017), 

including the embedding, projection, and transformer blocks, as shown in Figure 3.  
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In multivariate time series forecasting, given historical observations  1, , T N

TX x x R =   

with T time steps and N variates, we predict the future S time steps  1, , S N

T T SY x x R 

+ += 

.For convenience, we denote 
tX ， as the simultaneously recorded time points at the step t, and 

nX   as the whole time series of each variate indexed by n. The process of predicting future 

series of each specific variate nŶ  based on the lookback series nX   is simply formulated as 

follows:  

0

n( )nh Embedding X =                                                   (7) 

1 ( ), 0, , 1l lH TrmBlock H l L+ = = −                                        (8) 

n
ˆ Pr ( )L

nY ojection h =                                                    (9) 

where  1, , N D

NH h h R =   contains N embedded tokens of dimension D and the superscript 

denotes the layer index. : T DEmbedding R R  and Pr : D Sojection R R  are both 

implemented by multi-layer perceptron (MLP). 

We organize a stack of L blocks composed of the layer normalization, feed-forward network, 

and self-attention modules (Hiew et al., 2023). In our inverted version, the normalization is 

applied to the series representation of individual variate as Eq. (9).  

( )
( ) 1, ,

( )

n n

n

h Mean h
LayerNorm H n N

Var h

 − 
= = 
  

                              (10) 

y（n）

(1)

0 1( ) ( ( ))y n E w n+
(2)

0 1( ) ( ( ))y n E w n+
( )

0 1( ) ( ( ))ly n E w n+

(1)

0 1[ ( ) ( ( ))]M y n E w n+ (2)

0 1[ ( ) ( ( ))]M y n E w n+ ( )

0 1[ ( ) ( ( ))]lM y n E w n+

(1)

1 1 2( ) ( ( ))R n E w n+ (2)

1 1 2( ) ( ( ))R n E w n+ ( )

1 1 2( ) ( ( ))lR n E w n+

(1)

1 1 2[ ( ) ( ( ))]M R n E w n+ (2)

1 1 2[ ( ) ( ( ))]M R n E w n+ ( )

1 1 2[ ( ) ( ( ))]lM R n E w n+

(1)

1( ) ( ( ))k k kR n E w n ++ (2)

1( ) ( ( ))k k kR n E w n ++ ( )

1( ) ( ( ))l

k k kR n E w n ++

(1)

1[ ( ) ( ( ))]k k kM R n E w n ++ (2)

1[ ( ) ( ( ))]k k kM R n E w n ++ ( )

1[ ( ) ( ( ))]l

k k kM R n E w n ++

...

...

...

...

...

...
1( )R n

1 1( ) ( )IMF y n R n= −

2 ( )R n
2 1 2( ) ( )IMF R n R n= −

1kR + 1 1( ) ( )k k kIMF R n R n+ += −

...

...

 
Fig. 2 – Flowchart describing the improved version of CEEMDAN 
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In the inverted version, FFN is leveraged on the series representation of each variate token, they 

can extract complicated representations to describe a time series. With comprehensively 

extracted representations of each time series  1, , N D

NH h h R =  , the inverted model 

regards the whole series of one variate as an independent process. The self-attention module 

adopts linear projections to get queries, keys, and values , , kN d
Q K V R


 ,where 

kd  is the 

projected dimension. With denotation of , kd

i jq k R  as the specific query and key of one 

(variate) token, we notice that each entry of the pre-Softmax scores is formulated as: 

, ,( / )i j i j i jA QK dk q k =                                             (11) 

The whole score map N NA R   exhibits the multivariate correlations between paired variate 

tokens, highly correlated variate will be more weighted for the next representation interaction 

with values V. The algorithm for iTransformer is as follows: 

Algorithm 2 iTransformer -Overall Architecture. 

Require: Input lookback time series T NX R  ；Input Length T ;predicted length S

;variates number N ;token dimension D ; iTransformer block number L . 

1: .X X transpose=  ▷ N TX R   

2: 
▷Multi-layer Perceptron works on the last dimension to embed series into variate 

tokens. 

3: 
0 ( )H MLP X=  ▷ 0 N DH R   

4: 
For l  in {1, , }L  : ▷Run through iTransformer 

blocks. 

5: ▷ Self-attention layer is applied on variate tokens. 

6: 
1 1 1( ( ))l l lH LayerNorm H Self Attn H− − −= + −  ▷ 1l N DH R−   

7: 
▷ Feed-forward network is utilized for series representations, broadcasting to 

each token. 

8: 
1 1( ( ))l l lH LayerNorm H Feed Forward H− −= + −  ▷ l N DH R   

9: 
▷ LayerNorm is adopted on series representations to reduce variates 

discrepancies. 

10: End for 

11: 
ˆ ( )LY MLP H=  ▷Project tokens back to predicted series,

ˆ N SY R   

12: ˆ ˆ.Y Y transpose=  ▷ ˆ S NY R   

13: 
Return 

Ŷ  
▷ Return the prediction result Ŷ  

2.3. Evaluation metrics 

2.3.1 Residual test 

In time series analysis, the ADF (augmented Dickey-Fuller) test and PACF (partial 

autocorrelation function) are two commonly used tools to test the smoothness and analyze the 

autocorrelation of a time series, respectively, and they are particularly important when 

analyzing residuals. The ADF test is based on the following regression model: 
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1

p

t t i t i t

i

y t y y   − −

=

 = + + +  + ň                                    (12) 

where 
ty  is the value of the time series at time t ; 

1tt ty yy − = −  is the first-order difference of 

the time series;   is the constant term; t  is the time-trend term;  is the coefficient of the lag 

term, which is used to test for a unit root; 
i  is the coefficient of the difference lag term; and 

tň  

is the error term. The PACF test is based on the following regression model: 

0 1 1 2 2t t t k t k ty y y y   − − −= + + ++ +ň                                 (13) 

where 
k  is the partial autocorrelation coefficient of the kth lag term. The combined use of 

ADF and PACF allows a comprehensive assessment of whether the model’ s residuals are 

consistent with the white noise assumption (i.e., the residuals are smooth and free of 

autocorrelation), and thus the validity of the model can be judged. 
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Fig. 3 – Overall structure of iTransformer 

2.3.2 Predictive performance 

In order to compare the predictive performance of the models, five different evaluation metrics 

are chosen in our work: mean square error (MSE), mean absolute error (MAE), root mean 

square error (RMSE), mean absolute percentage error (MAPE), and mean squared percentage 

error (MSPE), and which both characterize the error between the predicted and actual values, 

with smaller values representing better model predictions. Given the true value ,d h  and the 

predicted value ,
ˆ

d h , 1,2, , dd N=  represents days and 1,2, ,24h =  represents hours. The 

formulas for each are shown below: 

24 2
,,1 1

1 ˆ( )
24

dN

d hd hd h
d

MSE
N = =

= −                                     (14) 
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also known as the L2 paradigm loss, it is averaged by summing the true value minus predicted 

value and then squaring it. 

24

,,1 1

1 ˆ
24

dN

d hd hd h
d

MAE
N = =

= −                                        (15) 

also known as the L1 paradigm loss, this is the average of the absolute differences between the 

predicted and observed values. 

24 2
,,1 1

1 ˆ( )
24

dN

d hd hd h
d

RMSE MSE
N = =

= − =                                (16) 

MSE becomes RMSE after the root sign, and the magnitude of the error result is on the same 

level as the original data, which makes it easier to describe the results of our prediction. The 

differences between RMSE and MAE are: for poorly predicted values, RMSE gives higher 

penalties than MAE; RMSE is smooth and differentiable, which makes it easier to perform 

mathematical operations, such as finding the gradient; and MAE is more robust to anomalous 

values. robustness. Therefore, the model is evaluated by combining the respective 

characteristics of MSE, MAE and RMSE metrics. MSPE and MAPE can indicate relative error 

preferences: 

,24 ,

1 1
,

ˆ1

24

d
d hN d h

d h
d d h

MAPE
N = =

−
=  

 


                                     (17) 

For each sample, the absolute error is divided by the target value and the MAPE can be 

considered a weighted version of the MAE. However, if the outlier has a very small value, the 

MAPE will be very biased in its favor because this outlier will have the highest weight. 

2

,24 ,

1 1
,

ˆ1

24

d
d hN d h

d h
d d h

MSPE
N = =

 
− 

=  
 
 

 
 


                                  (18) 

MSPE is considered as a weighted version of MSE with samples whose weights are inversely 

proportional to their true target squares. Based on the characteristics of MAPE, MSPE and data, 

it is only used for model evaluation for univariate tariff forecasting. 

2.3.3 Probabilistic forecasting  

The ICEEMDAN-iTransformer model to generate probabilistic forecasts by predicting multiple 

quantiles (e.g., 10th, 50th, and 90th percentiles) of the electricity price distribution. This allows 

us to construct confidence intervals and evaluate the model's ability to capture uncertainty. The 

quantile predictions were obtained by modifying the loss function to minimize the pinball loss, 

which is defined as 
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true pred true pred

true pred

pred true true pred

( ), if 
Pinball Loss( , , )

(1 ) ( ), if 

y y y y
y y

y y y y






 − 
= 

−  − 
      (19) 

where   is the quantile level, 
truey  is the true value, and predy  is the predicted quantile. The 

continuous ranked probability score (CRPS) was also calculated to measure the difference 

between the predicted and observed cumulative distribution functions: 

( )
2

pred true pred trueCRPS( , ) ( ) ( )F y F x F x dx


−
= −                      (20) 

where pred ( )F x  is the predicted cumulative distribution function and 
true ( )F x  is the true 

cumulative distribution function. 

3 DATA ANALYSIS 

This section familiarizes the reader with the data utilized, in particular the input characteristics 

and forecast targets. The European electricity market consists of derivatives, spot and balancing 

segments, the most important being the spot market, in particular the day-ahead auction (Zhu 

et al., 2024). It is held once a day at noon, and all products of the next day are traded in a 

uniform price auction. Since all hours of the next day are traded at the same time, all hours are 

based on the same set of information. In Europe, where electricity price levels vary considerably 

from country to country, the Spanish electricity market is dominated by renewable energy 

sources, particularly wind power, solar PV and solar thermal generation increasing year-on-

year (Karahan et al., 2024). In addition, the government has announced plans to retire coal-fired 

power plants by 2025, oil-fired power plants by 2030, and nuclear power plants by the end of 

2035 (Bonilla et al., 2022). With the retirement of these energy sources, the demand for 

renewable energy is expected to increase significantly to compensate for the retired generation 

resources while meeting the country’s growing electricity demand and is likely to dominate the 

Spanish electricity market over the forecast period (Ciarreta et al., 2020). Therefore, 

considering the impact of renewable energy on electricity prices, we have selected the day-

ahead electricity prices for the Spanish electricity market for forecasting. 

On an hourly basis, the day-ahead spot electricity price data of the Spanish electricity market 

for the time period 2022/1/1 0:59 to 2022/12/31 23:59 is selected as our target variable, as well 

as the data for 11 renewable energy generation, including generation biomass, generation 

geothermal and another 9 renewable energy generation datasets, etc. The dataset spans one year 

and includes 8760 hourly data points for each of the 12 variables. Detailed day-ahead spot 

electricity price and renewable energy generation datasets information separately are provided 

in Appendix A and Appendix B. Since the spot electricity price in Spain before the day is 

affected by daylight saving time, which resulted in missing or discontinuous data, the missing 

values are interpolated using forward fill or backward fill based on the distributional 

characteristics of the data and the expert knowledge to estimate the most probable values of the 

missing values, in order to ensure the accuracy and consistency of the data. Then, the dataset is 

divided into training, validation and test sets with 8:1:1, 7008, 876 and 876 entries, respectively, 

to perform uni/multivariate day-ahead electricity price prediction in the long term. 

Table 1 presents the descriptive statistics of electricity prices and renewable energy generation. 

The mean value of electricity price is 41.6325EUR/MWh; the standard deviation is 15.168, 

which means that the electricity price data fluctuates about 15EUR/MWh above and below the 
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mean value, which is not a particularly large range of fluctuation compared to the mean value; 

the minimum electricity price is 2.3EUR/MWh, and the maximum price is 88.44 EUR/MWh; 

the kurtosis and skewness are -0.12509 and -0.1606, indicating that the distribution of electricity 

price is slightly left-skewed, i.e, low electricity price appears slightly more often than high 

electricity price, and the kurtosis of the electricity price distribution is slightly flat compared 

with the normal distribution, and the trend of electricity price is shown in Figure 4. And, from 

these data, it can be seen that different types of electricity generation have different 

characteristics: biomass, waste and other renewable energy sources are more stable, and 

onshore wind and photovoltaic power generation with a standard deviation of 5242.79 and 

1402.747 have a great volatility, respectively; see Figure 5.  

Tab. 1 – Descriptive statistics of day-head electricity price and renewable energy generation. 

index mean std min 25% 50% 75% max Skew Kurt 

price 41.06 15.17 2.3 32.12 41.69 50.05 88.44 -0.13 -0.16 

biomass 366.13 76.73 0 327 352 391 592 0.52 0.65 

geothermal 0 0 0 0 0 0 0 0 0 

pumped 

storage  
527.52 828 0 0 101 740 4162 1.95 3.28 

run-of-river 994 445 0 607 925 1359 1939 0.41 -1.05 

water 

reservoir 
3302 2230 0 1269 3041 4947 9389 0.46 -0.84 

marine 0 0 0 0 0 0 0 0 0 

other 81.84 10.85 0 75 83 89 115 -0.31 0.74 

solar 1403 1667 0 67 614 2428 5792 1.07 -0.28 

waste 259.10 49.95 0 220 265 302 350 -0.65 0.01 

offshore 0 0 0 0 0 0 0 0 0 

onshore 5243 3176 0 2764 4609 7104 16284 0.91 0.40 
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Fig. 4 – Spanish day-ahead electricity price data for 2022 year 

Based on this analysis of the European electricity market and the Spanish electricity market, as 

well as the analysis of day-ahead electricity prices and renewable energy sources, the aim is to 

construct an ICEEMDAN-iTransformer model capable of accurately predicting day-ahead spot 

electricity prices. The model will take into account the impact of variations in generation from 

various renewable energy sources and daily fluctuations in electricity consumption on the day-

ahead spot electricity price. It is expected to provide electricity market participants with 
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valuable information on electricity price forecasts and help them better formulate energy 

purchasing, sales and storage strategies to cope with market uncertainty and volatility. 
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Fig. 5 – Five renewable energy generation data for Spain in 2022 

4 CASE STUDY 

Forecasting in energy markets is recognized as one of the most impactful areas where 

machine/deep learning contributes to transitioning to a renewable-based electrical 

infrastructure. In addition to the evaluation metrics and time efficiency analysis, it is crucial to 

validate the performance of the proposed models more comprehensively. Cross-validation is a 

widely used technique in machine learning to assess how well a model will generalize to an 

independent dataset. In this study, we apply cross-validation to further enhance the reliability 

of our model evaluation results and provide more robust evidence for the effectiveness of the 

ICEEMDAN-iTransformer model. In the process of forecasting long-term day-ahead electricity 

prices, the section 4.1 describes the time efficiency of the model including the minimum epoch 

time and total time, as well as the parameters of the iTransformer model, the environment, 

hardware configuration and platform required for this work. In section 4.2, which starts 

univariate day-head electricity price long-term forecasting by using the proposed iTransformer 

model and compares it to the benchmark models based on the formers and the invert-formers, 

and in section 4.3, the multivariate electricity price prediction is carried out considering the 



 

https://doi.org/10.7441/joc.2025.01.10 215 

 

impact of renewable energy on electricity prices, and the same comparison between the models 

is carried out. Section 4.4 utilizes the ICEEMDAN decomposition method to preprocess the 

electricity prices in order to improve the prediction speed and prediction accuracy of the 

iTransformer model. In order to improve the robustness and reliability of the research results, 

interpretability, cross-validation and uncertainty quantification techniques were used in Section 

4.5 to verify the ICEEMDAN-iTransformer model. Finally, in section 4.6, the policy 

implications and implementation recommendations of the electricity price and forecasting 

model are presented. 

4.1. Predictive model parameters and time efficiency 

Usually, models with higher complexity have longer response times. However, long-term 

electricity price time-series forecasting requires high real-time performance, meaning the model 

must quickly process input data and generate predictions. Therefore, comparing the 

responsiveness of the complex model through the time efficiency values is crucial for predicting 

the electricity price, and we implement the minimum epoch time and the total training time to 

evaluate the model responsiveness (Bian et al., 2021). The total training time is the total time 

required for the whole training process from the beginning to the end, and the minimum epoch 

time is the shortest time required to complete an epoch, and they depend on several factors, 

including the size of the model, the amount of training data, the hardware environment (e.g., 

the performance and the number of CPUs and GPUs), the optimization algorithm, and the speed 

of data loading. Overall, total training time and minimum epoch time are two important values 

for evaluating the training efficiency of machine learning models. The total training time 

reflects the time-consumption of the whole training process, while the minimum epoch time 

focuses more on the efficiency of individual epochs. Among them, the iTransformer model 

parameter settings are shown in the Table 2., and the operating environments for the work 

experiments are CPU 16 2.10GHz Intel(R) Xeon(R) Platinum 8352V, GPU 

RTX4090(24GB)*1, 30 GB of RAM, 120 GB of memory, Windows 10 OS and PyCharm 

2023.1 platform, interpreter virtual environments PyTorch 2.0.0, Python 3.8 (ubuntu20.04) and 

Cuda 11.8. 

Tab. 2 – The iTransformer model’s parameters, description, and default values 

Parameters Description Default 

d_model 
The principal dimension of the model, which usually determines the 

size of embeddings and transformations within the model 
512 

n_heads Number of heads used in multi-head attention mechanisms 8 

e_layers Layers of Encoder 16 

d_layers Number of layers of decoder 8 

d_ff Dimension of the feedforward neural network 2048 

moving_avg Window size of the moving average 67 

factor Attention factor 1 

dropout 
Discard rate, which randomly "turns off" a portion of the nodes in the 

network to prevent overfitting 
0.3 

activation Type of activation function softmax 

batch_size Batch size of training input data 16 

Furthermore, to mitigate the risk of overfitting, the model incorporates a dropout layer with a 

rate of 0.3 in the architecture. This helps prevent the model from over-relying on specific 

features and enhances its generalization ability. Additionally, we employed early stopping 

during the training process to monitor the validation loss, ensuring that the model stops training 
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when the validation performance no longer improves. These strategies effectively reduce the 

risk of overfitting, especially given the relatively short period of the training dataset. 

4.2. Comparative experiment 1：Electricity price forecasting 

In experiment 1, before the beginning of the comparison experiment, the univariate day-ahead 

electricity price is predicted by iTransformer on the test set of 878 data samples, and the 

univariate is denoted by S. From the results of the prediction, 603-699 and 811-878 are selected 

as a demonstration, as shown in Figure 6. The evaluation metrics are compared with those of 

the transformer, informer, reformer, flowformer, and flashformer models, and their invertible 

models: iInformer, iReformer, iFlowformer, and iFlashformer. The results of the univariate 

day-ahead electricity price prediction are presented in Table 3, which compares the 

performance of different models. The results of the regression evaluation metrics of which 

15.16403iT

SMSE = , 2.66547iT

SMAE = , 
iT

SRMSE = 3.89410 , 0.05807iT

SMAPE = , and 

0.01111iT

SMSPE = , time efficiency 19.08380iT

ST s =  ( T   stands for the total training 

completion time, as follows) and 4.65607iT

SMINepo s=  ( MINepo  stands for the single 

minimum epoch training completion time, as follows). Compared to the second-best 

performance 4.02761T

SRMSE =  improved by 3.3149% and the worst performance 

15.63953In

SRMSE =  improved by 75.1009%. For the remaining four regression evaluation 

metrics 
SMSE , 

SMAE , 
SMSPE , and 

SMAPE , the iTransformer’ metrics are also obtained 

Optimum compared to the remaining nine models. When training large data samples, by 

comparing the training total time and the minimum epoch training time, iTransformer also 

embodies the best time performance. In addition, invertible models perform better than the 

general model to verify the accuracy advantage of former models’ regression prediction，such 

as 
R iR

S SMAE MAE  , 
In iIn

S SMSPE MSPE , etc, and the transformer model can predict the 

electricity price better than the benchmark model. Conclusions obtained from the experiments 

in this subsection are as follows. 

The iTransformer model performs well on the univariate day-ahead electricity price long-term 

prediction task, not merely outperforming other former variants and its inverted model in terms 

of prediction accuracy, but demonstrating significant advantages in training efficiency. The 

better performance of inverted models (such as iTransformer) compared to the benchmark 

former model in predicting time series data such as electricity prices demonstrates the 

effectiveness of invert operations or architectural adjustments in improving model performance. 

Tab. 3 – The evaluation metrics of the univariate day-ahead electricity price long-term 

prediction 

Experiment1 MSE MAE RMSE MAPE MSPE 
min epoch 

time 

train total 

time 

iTransformer 15.16403 2.66547 3.89410 0.05807 0.01111 4.65607 19.08380 

Transformer 16.22160 2.70541 4.02761 0.05934 0.01161 16.21223 81.90100 

iInformer 16.22187 2.66739 4.02764 0.05812 0.01162 5.39546 23.39110 

Informer 244.5949 12.3916 15.6396 0.3252 0.3980 9.26983 67.8623 

iReformer 16.22188 2.66743 4.02764 0.05812 0.01162 7.05380 65.29040 

Reformer 25.11915 3.58263 5.01190 0.0873 0.0275 21.3851 86.4040 

iFlowformer 16.22444 2.67316 4.02796 0.0583 0.0116 7.06277 29.1705 

Flowformer 200.7352 11.5294 14.1681 0.2857 0.2780 16.12163 81.68250 
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iFlashformer 169.5713 10.58634 13.02195 0.25856 0.20943 5.98980 24.69680 

Flashformer 105.9423 8.30927 10.29283 0.19888 0.12010 17.34529 88.07880 
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a) iTransformer (603-699)                       b) iTransformer (782-878) 

Fig. 6 – Partly dated iTransformer prediction and groundtruth curves 

4.3. Comparative experiment 2：Multivariate Renewable Energy Forecasts for Long-Term 

Day-Ahead Electricity Prices 

Based on the long-term univariate day-ahead electricity price forecasting in Section 4.2, the 

iTransformer model demonstrates superior prediction performance. However, the model 

prediction regression indicator evaluation metrics are still high, such as 2.6 iT

SMAE , in order 

to improve the accuracy of electricity price prediction and reduce the error between the real 

value and the predicted value. To account for the impact of renewable energy on electricity 

prices, we incorporate datasets including offshore wind power generation, solar generation, and 

nine other renewable energy generation types to predict long-term day-ahead electricity prices. 

The values of the evaluation metrics are shown in the Table 4. Among them, the 

0.68159iT

MSMAE =  is reduced by 1.983876 compared with the univariate prediction value, and 

the prediction accuracy is improved by 74.4287%; similarly, the 2.16687iT

MSRMSE =  is 

reduced by 1.72723 compared with the univariate prediction value 
iT

SRMSE , and the prediction 

accuracy is improved by 44.355%, which means that multivariate prediction of long-term day-

ahead electricity price by adding renewable energies can improve prediction accuracy 

compared with the single day-ahead electricity price. At the same time, the performance of each 

evaluation metrics of iTransformer model is still optimal compared with other models. The 

prediction of reformer, iReformer and iTransformer test dataset 469-565 are selected as shown 

in Figure 7. This respectively represents a), b), and c), and it can be seen that reformer predicts 

poorly, and the invert of Reformer improves the prediction curve and real value curve. The 

iTransformer model demonstrates significantly better performance, showing an excellent fit 

between its prediction curve and the true value curve while substantially reducing prediction 

errors compared to the iReformer model. Therefore, the conclusions in Section 4.2 are still 

applicable to renewable energy multivariate prediction of day-ahead electricity price, reflecting 

the versatility of iTransformer in different scenarios. The key conclusions are summarized 

below: 

Incorporating renewable energy generation data as an input to the forecasting model can 

significantly improve the forecasting accuracy of day-ahead electricity prices in the long term. 
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Meanwhile, the iTransformer model is still proven to be the optimal model choice in renewable 

energy multivariate forecasting due to its excellent forecasting performance. 
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Fig. 7 – Partly dated Reformer, iReformer, iTransformer prediction and groundtruth curves 

Tab. 4 – The evaluation metrics of multivariate features forecasts electricity prices 

Experiment2 MSE MAE RMSE min epoch time train total time 

iTransformer 4.695327 0.681594 2.16687 14.54956913 59.70454788 

Consider other 

features 
4.669511 0.758503 2.134172 45.17404 581.5983 

Transformer 9.163141 1.227417 3.027068 21.68234706 87.8282671 

iInformer 4.695855 0.683136 2.166992 15.5395484 62.58625722 

Informer 75.03659 3.870082 8.662366 16.46343279 66.52321124 

iReformer 4.695373 0.681657 2.166881 15.86065292 63.99518967 

Reformer 5.335418 0.910943 2.309852 16.92648888 68.05429554 

iFlowformer 4.695336 0.6817 2.166872 15.88871312 64.60833597 

Flowformer 6.440564 1.046804 2.537827 25.24079251 102.6827655 

iFlashformer 4.695335 0.681698 2.166872 15.87379789 63.82011175 

Flashformer 6.284764 1.039362 2.506943 31.73850846 129.0352755 

We further incorporate meteorological factors, carbon policy data (Zeng et al., 2023), social 

activity-derived load patterns, and renewable generation features to assess their combined 

effects on iTransformer’s price forecasting accuracy. The experiments in Table 4 show that the 
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model prediction performance is improved after fusing these features, but the improvement is 

limited. The MSE of the model is 4.669, the MAE is 0.758, and the RMSE is 2.134, but the 

minimum training round time reaches 45.174, and the total training time is as high as 581.598. 

Due to the significant increase in training time and the insignificant improvement in prediction 

performance, we decided to eliminate these features by considering the prediction cost and 

computational efficiency, and then carry out the subsequent data decomposition and model 

optimization work. 

4.4. The ICEEMDAN-based decomposition electricity prices prediction 

Section 4.4 incorporates renewable energy generation data into the iTransformer model for 

multivariate long-term forecasting of day-ahead electricity prices, which significantly reduces 

forecasting errors. However, the day-ahead electricity price is not only affected by renewable 

energy, but also by a series of other complex factors, including the supply and demand situation 

in the electricity market, seasonal patterns, tariff regulation mechanism, environmental and 

climatic factors, and cost factors, etc., each of which may have different degrees of influence 

on electricity price, and there may be interactions and correlations among these factors, making 

it impossible to cover all the relevant factors for predicting the day-ahead electricity price in 

the forecast. Therefore, section 4.5 proposes to decompose the raw time series data into a 

number of components or trends in order to better understand the intrinsic structure and 

dynamics of the data. 

In addition, we also performed an ADF test on the residuals of the ICEEMDAN decomposition 

as shown in Figure. 8, which shows an ADF statistic of -7.275 with a p-value of 1.55e-10. This 

result indicates that the residuals are smooth and do not contain important trend or period 

information. Therefore, the residual component was chosen to be ignored and its effect on the 

prediction results is negligible. 
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Fig. 8 – Residual test 

The ICEEMDAN decomposition algorithm adaptively decomposes the day-ahead electricity 

price data, with a signal-to-noise ratio of 0.2 and a maximum of 100 iterations to reduce data 

volatility and prediction complexity, and the decomposition results are shown in Figure 9. Sets 

of intrinsic mode functions (IMF) are obtained, and the frequencies of each modal component 

are relatively stable, and there is no obvious modal aliasing. The components gradually decrease 

from the high-frequency IMF1 to the low-frequency IMF5, and the data tend to stabilize 

gradually. In addition, high-frequency data represent short-term fluctuation trends, and lower 
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frequency data represent longer fluctuation trends, which clearly identifies the long-term trends 

and cyclical changes of the data. 
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Fig. 9 – The ICEEMDAN algorithmic decomposition of electricity prices 

After obtaining the components, the mean aggregation reconstruction is used to obtain the 

predicted electricity price under the day-head electricity price dataset, and Table 5 shows the 

performance of the iTransformer model for multivariate long-term prediction of five 

eigenmodal components based on the regression evaluation metrics. The comparative results 

between iTransformer and ICEEMDAN-iTransformer are illustrated in Figure 10. The 

evaluation value 1 2.03284Ice

MIMFMAE =  of the prediction metrics for the component 1IMF  is 

larger than that 2 1.79558Ice

MIMFMAE =  for the component 2IMF  and the 
Ice

MIMFMAE  decreases 

sequentially in the order of the number from IMF1 to IMF5, the smallest component 5IMF  has 

an evaluation value of 5 0.15415Ice

MIMFMAE = , and the other two metrics 
Ice

MIMFMSE  and 

Ice

MIMFRMSE  also follow the law of sequential decrease pattern, which indicates that the lower 

the frequency of the intrinsic modal component, the smoother the data, the better the prediction 

and the lower the error. In order to verify the prediction effect of ICEEMDAN-iTransformer, 

the decomposed modal prediction indicator evaluation values are equally weighted through 
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equal weighting method, and the 
Ice iT

MMAE −
, 

Ice iT

MMSE −
, and 

Ice iT

MRMSE −
 are 3.21430, 0.99947, 

and 1.57464, compared to the undecomposed model metrics evaluation value 
iT

MRMSE =  

2.16688 . The decomposed prediction error is reduced by 0.592238, and the prediction accuracy 

is improved by 27.331%. Although the MAE is slightly higher, ICEEMDAN-iTransformer 

performs better in terms of MSE, RMSE, and minimum training epoch time, which implies that 

it fits the data better overall and the fluctuation range of the predictions is smaller. Moreover, 

MAE is more sensitive to outliers, while MSE/RMSE gives more weight to larger errors. As a 

result, ICEEMDAN-iTransformer may perform slightly worse than iTransformer in dealing 

with extreme values or outliers, but in most cases it provides more stable predictions. In 

combination with iTransformer, ICEEMDAN-iTransformer may be more advantageous in 

dealing with noise, nonlinearity, and non-smoothness in the data, i.e., it is more robust in 

dealing with complex data. Despite the current slightly higher MAE metrics, ICEEMDAN-

iTransformer has the potential to be further optimized. By adjusting the parameters or 

combining other techniques, the MAE can be further reduced while maintaining the advantages 

of other metrics. 

Tab. 5 – The evaluation metrics of ICEEMDAN-based decomposition electricity prices 

prediction. 

Experiment3 MSE MAE RMSE 
min epoch 

time 

train total 

time 

iTransformer 

IMF1 8.21625 2.032836 2.8664 15.1222 62.76353 

IMF2 5.292674 1.795578 2.300581 13.37018 55.21547 

IMF3 1.407574 0.779975 1.186412 13.87818 87.74128 

IMF4 0.586017 0.234817 0.765518 12.72086 81.29473 

IMF5 0.568975 0.154148 0.754304 14.80903 60.33127 

ICEEMDAN- iTransformer 3.214298 0.999471 1.574643 13.98009 69.46926 

iTransformer 4.695327 0.681594 2.166881 14.54957 59.70455 

0

10

20

30

40

50

60

70

MSE MAE RMSE

1

2

3

4

5

Min epoch time Total time

(s)

Model evaluation metrics 

and

 time efficiency

 

Fig. 10 – The evaluation comparative results between iTransformer and ICEEMDAN-

iTransformer 

4.5 Model Validation Techniques 

4.5.1 Interpretability 

The interpretability of the model is a key aspect that requires more attention. While the 

ICEEMDAN-iTransformer model significantly improves forecast accuracy, this section fully 

explains its predictions from the perspective of market participants. Figure 11 illustrates the 
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average absolute SHAP values for renewable energy generation for each input feature, which 

represent the average degree to which these features influence the model’s output. For example, 

the relatively high average absolute SHAP values for onshore wind generation and solar 

generation indicate that they have a significant impact on the final model output and dominate 

the final forecast results. 

In addition to these renewable energy output characteristics, the average absolute SHAP values 

for hydropower-related characteristics (e.g., reservoir hydropower, run-of-river hydropower, 

and pumped-storage consumption) are in the medium range, indicating that they also have some 

influence on the model outputs, and are one of the important factors influencing the prediction 

results, but to a slightly lesser extent than the former two. As for the other energy generation 

features, their average absolute SHAP values are low and have relatively little impact on the 

final model output. 
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generation waste

generation other renewable

0 10 20 30 40
mean(|SHAP value|) (average impact on model output)

 

Fig. 11 – Average degree of influence of input features on SHAP output from iTransformer 

To elucidate the logical relationships between the features in the model’s explanatory 

framework - in particular, their positive or negative impact on electricity price forecasts - we 

refer to Figure 12. Typically, high wind generation negatively affects the price of electricity 

(resulting in lower prices), which is due to the low cost and abundant supply of wind power, 

while low wind power generation may lead to higher prices. Similarly, high solar generation 

typically has a negative impact on electricity prices, especially during periods of abundant 

sunlight, while low solar generation may push up prices. By analyzing these SHAP values, 

market participants can have a more intuitive understanding of the model’s forecasting logic, 

thereby increasing confidence in the forecast results. 

This visual presentation provides a more intuitive way to understand how different input 

characteristics affect the forecast results. More detailed analyses based on such visualizations 

(e.g., further exploring how fluctuations in wind and solar power generation affect forecasts) 

can be valuable to policymakers, market operators, and industry practitioners. 

4.5.2 Probabilistic Forecasting and Outlier Sensitivity Analysis 

The results of probabilistic forecasting are presented in Table 6 and Figure 13. The 

ICEEMDAN-iTransformer model consistently achieves the lowest pinball loss across all 

quantiles (α=0.1 to α=0.9), demonstrating superior performance in probabilistic forecasting. 
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For instance, at α=0.1, the pinball loss is 1.3235, significantly lower than other models (e.g., 

informer: 2.6726, iInformer: 1.9944). The iTransformer model also performs well, with pinball 

loss values slightly higher than ICEEMDAN-iTransformer but still better than the baseline 

transformer and informer models. This suggests that the inverted transformer architecture 

enhances probabilistic forecasting accuracy. The informer and transformer models exhibit 

higher pinball loss values, indicating less accurate probabilistic forecasts, particularly at 

extreme quantiles (α=0.1 and α=0.9). These results indicate that the ICEEMDAN-iTransformer 

model effectively captures uncertainty in electricity prices and provides reliable confidence 

intervals. 
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Fig. 12 – Feature Importance of input features based on SHAP values from iTransformer 

The ICEEMDAN-iTransformer model achieves a CRPS of 8.6278, slightly higher than the 

iInformer (8.6112) but lower than the transformer (8.6681) and informer (8.6680). This 

indicates that ICEEMDAN-iTransformer provides a better fit to the observed cumulative 

distribution function compared to the baseline models. The iInformer model has the lowest 

CRPS, suggesting it performs slightly better in terms of overall probabilistic forecasting 

accuracy. However, the difference is minimal, and ICEEMDAN-iTransformer remains 

competitive. 

Tab. 6 – Comparative performance of models in probabilistic forecasting and outlier 

sensitivity analysis 

Model 

Pinball 

Loss 

(α=0.1) 

Pinball 

Loss 

(α=0.3) 

Pinball 

Loss 

(α=0.5) 

Pinball 

Loss 

(α=0.7) 

Pinball 

Loss 

(α=0.9) 

CRPS 
MSE 

(Top 5%) 

MSE 

(Bottom 

5%) 

Informer 2.6726 2.6873 2.7020 2.7167 2.7313 8.6680 17.7662 0.1960 

iInformer 1.9944 1.9542 1.9141 1.8740 1.8339 8.6112 19.0153 0.0063 

ICEEMDAN-

iTransformer 
1.3235 1.3260 1.3286 1.3312 1.3338 8.6278 10.8407 0.0858 

Transformer 2.1531 2.2231 2.2932 2.3632 2.4332 8.6681 18.1176 0.1130 

iTransformer 1.9741 1.9331 1.8920 1.8510 1.8099 8.6311 14.8767 0.1198 
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Fig. 13 – Pinball loss and CRPS values for different models 

The results of outlier sensitivity are presented in Table 6 and Figure 14. The ICEEMDAN-

iTransformer model achieves the lowest MSE (10.8407) for the top 5% of price values, 

indicating its robustness in handling extreme price spikes. This is a significant improvement 

over the informer (17.7662) and transformer (18.1176) models. The iInformer model performs 

slightly worse than ICEEMDAN-iTransformer, with an MSE of 19.0153, suggesting that the 

ICEEMDAN decomposition further enhances the model’s ability to handle extreme values. 

The iInformer model achieves the lowest MSE (0.0063) for the bottom 5% of price values, 

indicating excellent performance in predicting extreme price drops. However, the 

ICEEMDAN-iTransformer model also performs well, with an MSE of 0.0858, significantly 

better than the transformer (0.1130) and informer (0.1960) models. The iTransformer model 

has a slightly higher MSE (0.1198) for the bottom 5% outliers, suggesting that the ICEEMDAN 

decomposition helps improve the model’s sensitivity to extreme low prices. This demonstrates 

the model’s robustness in handling extreme price fluctuations, which are common in electricity 

markets due to factors such as sudden changes in renewable energy generation or demand 

spikes. 

Overall, the ICEEMDAN-iTransformer model demonstrates the best performance in 

probabilistic forecasting, with the lowest pinball loss across all quantiles and the lowest MSE 

for the top 5% outliers. This indicates that the model is highly effective in capturing uncertainty 

and handling extreme price fluctuations. The iInformer model performs well in terms of CRPS 

and MSE for the bottom 5% outliers but is slightly outperformed by ICEEMDAN-iTransformer 

in handling extreme price spikes. The baseline informer and transformer models show higher 

errors across all metrics, highlighting the limitations of traditional transformer architectures in 

probabilistic forecasting and outlier sensitivity. 

The ICEEMDAN-iTransformer model stands out as the most robust and accurate model for 

probabilistic forecasting and handling extreme price fluctuations in electricity markets. Its 
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ability to capture uncertainty and adapt to extreme values makes it a strong candidate for real-

world applications in electricity price forecasting. The iInformer model also shows promise, 

particularly in handling extreme low prices, but the ICEEMDAN-iTransformer model offers a 

more balanced and comprehensive performance across all metrics. 
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Fig. 14 – MSE for top and bottom 5% outliers for different models 

4.5.3 Cross-Validation 

To evaluate the generalization ability of the models, we conducted k-fold cross-validation with 

k=5. The dataset was divided into five folds, and each model was trained on four folds while 

validated on the remaining fold. This process was repeated five times, ensuring that each fold 

was used exactly once as the validation set. The average performance metrics across all folds 

are reported in Table 7, and the main observations are illustrated in Figure 15. 

The ICEEMDAN-iTransformer model achieves the lowest average MSE (2.698) across all five 

folds, indicating the highest overall accuracy in predicting day-ahead electricity prices. This 

performance is significantly better than the baseline models, such as the informer (5.464) and 

transformer (4.578). The iInformer model also performs well, with an average MSE of 3.788, 

which is lower than the baseline transformer and informer models but higher than ICEEMDAN-

iTransformer. This suggests that the inverted transformer architecture improves forecasting 

accuracy, but the ICEEMDAN decomposition further enhances performance. The iTransformer 

model, which does not include the ICEEMDAN decomposition, achieves an average MSE of 

3.662, slightly better than the iInformer but still outperformed by ICEEMDAN-iTransformer.  

The ICEEMDAN-iTransformer model exhibits the lowest standard deviation (0.066), 

indicating the most consistent performance across different folds. This suggests that the model 

is robust and generalizes well to unseen data. The iInformer and iTransformer models also show 

relatively low standard deviations (0.131 and 0.095, respectively), indicating stable 

performance across folds. However, their standard deviations are higher than ICEEMDAN-

iTransformer, suggesting slightly less consistency. The informer and transformer models have 



 

https://doi.org/10.7441/joc.2025.01.10 226 

 

higher standard deviations (0.112 and 0.156, respectively), indicating more variability in their 

performance across different folds. This suggests that these models are less robust and may 

overfit to specific subsets of the data. 

Tab. 7 – Cross-validation performance of models in day-ahead electricity price forecasting 

Model Metrics Fold1 Fold2 Fold3 Fold4 Fold5 Average 
Standard 

deviation 

Infor 

mer 

MSE 5.403 5.349 5.526 5.654 5.387 5.464 0.112 

MAE 2.653  2.622  2.682  2.704  2.632  2.659  0.034  

MAPE 19.719 18.518  18.454  19.294  17.886  18.774  0.728  

MSPE 21.564  16.935  14.801  19.953  18.743  18.399  2.629  

iInfor 

mer 

MSE 3.828 3.565 3.942 3.730 3.874 3.788 0.131 

MAE 2.460  2.380  2.504  2.430  2.484  2.452  0.049  

MAPE 12.208  10.581  12.468  11.188  11.569  11.603  0.764  

MSPE 8.828  3.831  6.057  4.391  5.143  5.650  1.963  

ICEEM

DAN-

iTransfo

rmer 

MSE 2.621 2.676 2.754 2.797 2.643 2.698 0.066 

MAE 1.920  1.939  1.964  1.987  1.928  1.947  0.028  

MAPE 8.970  8.757  9.145  8.682  8.215  8.754  0.352  

MSPE 3.522  3.056  3.109  2.841  2.439  2.993  0.396  

Transfor

mer 

MSE 4.586 4.431 4.593 4.855 4.423 4.578 0.156 

MAE 2.531  2.436  2.508  2.565  2.462  2.500  0.052  

MAPE 17.933  16.490  15.845  16.582  15.221  16.414  1.011  

MSPE 23.567  16.664  12.705  15.939  14.194  16.614  4.181  

iTransfo

rmer 

MSE 3.784 3.527 3.707 3.716 3.577 3.662 0.095 

MAE 2.302  2.206  2.271  2.295  2.245  2.264  0.039  

MAPE 13.177  11.933  12.124  11.241  11.281  11.951  0.788  

MSPE 10.141  7.856  5.432  5.918  5.355  6.940  2.057  
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Fig. 15 – Boxplot of Cross-Validation for Day-Ahead Electricity Price Forecasting Models 
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The ICEEMDAN-iTransformer model consistently achieves the lowest MSE in each fold, with 

values ranging from 2.621 (fold1) to 2.797 (fold4). This demonstrates its ability to maintain 

high accuracy across different subsets of the data. The iInformer and iTransformer models show 

competitive performance, with MSE values generally lower than the baseline models but higher 

than ICEEMDAN-iTransformer. For example, the iInformer achieves an MSE of 3.565 in 

fold2, which is its best performance, but it still underperforms compared to ICEEMDAN-

iTransformer. The informer and transformer models exhibit higher MSE values across all folds, 

with the transformer showing particularly poor performance in fold4 (MSE = 4.855). This 

highlights the limitations of traditional transformer architectures in handling the complexities 

of electricity price forecasting. 

The ICEEMDAN-iTransformer model demonstrates the best overall performance in cross-

validation, with the lowest average MSE and the most consistent results across folds. This 

indicates that the model is robust and generalizes well to unseen data. The iInformer and 

iTransformer models also show strong performance, especially in terms of consistency, but they 

are outperformed by ICEEMDAN-iTransformer in terms of accuracy. The baseline informer 

and transformer models show higher errors and larger fold changes, indicating that they are less 

suitable for day-ahead tariff forecasting in volatile markets. The results demonstrate that the 

ICEEMDAN-iTransformer model maintains consistent performance across different subsets of 

the data, indicating its robustness to variations in the training and validation sets. 

4.6 Policy Implications and Implementation Suggestions 

The ICEEMDAN-iTransformer model offers significant implications for both enterprises and 

governments, particularly in the context of Spain’s day-ahead electricity market, which operates 

through time-of-day bidding and accounts for approximately 86% of the total spot market 

volume. By leveraging the model’s accurate day-ahead electricity price forecasts, stakeholders 

can make more informed decisions to optimize resource allocation, improve market efficiency, 

and promote sustainable energy practices. 

(1) Government Applications   

Governments can use the model’s predictions to optimize the allocation of resources, ensuring 

a more efficient and fair electricity market. This includes planning energy development 

strategies that prioritize the utilization of renewable energy resources while facilitating the 

transition and upgrading of traditional energy infrastructure. 

(2) Enterprise Applications  

Enterprises can use the model’s forecasts to better control costs, formulate production plans, 

and assess risks. For example, predicting price spikes allows businesses to adjust energy 

consumption or purchase electricity in advance to minimize expenses. 

(3) Integration into Trading and Grid Management 

The model can be integrated into electricity trading platforms through a two-step process. First, 

a data transformation layer standardizes input data (e.g., historical prices and renewable energy 

generation) for compatibility with the ICEEMDAN decomposition. Second, an API connects 

the model to trading algorithms, enabling real-time decision-making. For instance, traders can 

adjust bidding strategies based on predicted price spikes or drops. Grid operators can use the 

model’s forecasts to optimize power generation scheduling. For example, if the model predicts 
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high prices during peak hours and abundant renewable energy supply in the afternoon, operators 

can prioritize renewable generation, reducing reliance on fossil fuels. The model also helps 

predict power shortages or surpluses, allowing operators to take preventive measures such as 

importing power or implementing demand-response programs. 

By implementing these strategies, the ICEEMDAN-iTransformer model can enhance decision-

making in electricity trading, grid management, and policy development, while its adaptability 

ensures relevance across diverse energy markets. This contributes to a more efficient, 

sustainable, and resilient energy ecosystem. 

5 CONCLUSION 

In this paper, we proposed a novel day-ahead electricity price forecasting model, ICEEMDAN-

iTransformer, which integrates improved complete ensemble empirical mode decomposition 

with adaptive noise (ICEEMDAN) and the iTransformer model. The model was designed to 

address the challenges posed by the increasing integration of renewable energy into the 

electricity market, which introduces significant uncertainty and volatility in electricity prices. 

By decomposing historical electricity price data using ICEEMDAN, we were able to extract 

intrinsic mode functions (IMFs) that capture the nonlinear and non-stationary characteristics of 

the data. The iTransformer model, with its innovative inverted architecture, was then employed 

to independently predict the multidimensional time series data, including both IMFs and 

renewable energy generation data. 

A set of day-ahead electricity prices from the Valencia electricity market in Spain are used in 

the predictive analysis and led to some important conclusions. 

(1) Our experimental results demonstrated that the ICEEMDAN-iTransformer model 

outperforms several benchmark models as well as their inverted variants. The model exhibited 

superior performance in terms of prediction accuracy, handling of noise, nonlinearity, and non-

smoothness in the data, and robustness to extreme price fluctuations. Specifically, the 

ICEEMDAN-iTransformer model achieved the lowest mean squared error (MSE), mean 

absolute error (MAE), and root mean square error (RMSE) in both univariate and multivariate 

forecasting scenarios. Additionally, the model demonstrated excellent performance in 

probabilistic forecasting, as evidenced by its low pinball loss and continuous ranked probability 

score (CRPS), indicating its ability to capture uncertainty and provide reliable confidence 

intervals. 

(2) The incorporation of renewable energy generation data as an input to the forecasting 

model significantly improved the accuracy of day-ahead electricity price predictions. 

Furthermore, the ICEEMDAN decomposition process enhanced the model’s ability to handle 

complex data structures, leading to more stable and accurate forecasts. The model’s robustness 

was further validated through cross-validation and outlier sensitivity analysis, which showed 

consistent performance across different subsets of the data and during periods of extreme price 

fluctuations. 

The proposed model is a robust tool for day-ahead electricity price forecasting and can be 

extended to other complex time series forecasting tasks. However, in the future, the following 

aspects of this study still need to be improved and studied in depth: (i) More advanced model 

validation techniques, including uncertainty quantification methods (e.g., Bayesian neural 

networks or Monte Carlo dropout), should be further explored to more fully assess the 

predictive power and potential risks of models. (ii) Expand the model to consider the 
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interrelationships between different electricity markets (e.g., regional, national, and 

international markets). As energy trading becomes more globalized, price movements in one 

market can influence others. 
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