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The Usage of Time Series Control Charts  
for Financial Process Analysis
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Abstract
We will deal with financial proceedings of the company using methods of SPC (Statistical Proc-
ess Control), specifically through time series control charts. The paper will outline the intersec-
tion of two disciplines which are econometrics and statistical process control. The theoretical 
part will discuss the methodology of time series control charts and in the research part there will 
be this methodology demonstrated in three case studies. The first study will focus on the regula-
tion of simulated financial flows for a company by CUSUM control chart. The second study will 
involve the regulation of financial flows for a heteroskedastic financial process by EWMA con-
trol chart. The last case study of our paper will be devoted to applications of ARIMA, EWMA 
and CUSUM control charts in the financial data that are sensitive to the mean shifting while 
calculating the autocorrelation in the data. In this paper, we highlight the versatility of control 
charts not only in manufacturing but also in managing the financial stability of cash flows.

Keywords: Statistical Process Control, Shewhart’s control charts, autocorrelation, EWMA control chart, CU-
SUM control chart, ARIMA control chart.

1. INTRODUCTION
Traditional SPC schemes can be applied to monitoring the residuals. Subsequent work on this prob-
lem can be broadly classified into two themes; those based on time series models and those which 
are model-free. For the former, three general approaches have been proposed: those which monitor 
residuals, those based on direct observations, and those based on new statistics. A brief account of 
these approaches is presented in this chapter. The time series model based approach is easy to under-
stand and effective in some situations. However, it requires identification of an appropriate time series 
model from a set of initial in-control data. In practice, it may not be easy to establish and may appear 
to be too complicated to practicing engineers. Hence, the model-free approach has recently attracted 
much attention. The most popular model-free approach is to form a multivariate statistic from the 
autocorrelated univariate process, and then monitor it with the corresponding multivariate control 
chart. (Krieger et al., 1992) used a multivariate CUSUM scheme. (Apley and Tsung, 2002) adapted the 
T2 control chart for monitoring univariate autocorrelated process. (Atienza et al., 1997) proposed a 
Multivariate boxplot-T2 control chart. (Dyer et al., 2003) adapted the use of the multivariate EWMA 
control chart for autocorrelated processes. Statistical financial flow proceeding means the cash flow 
management in company. We can avoid possible loss by the cash flow monitoring. This loss can be 
caused by nondelivery goods, bad financial investment, etc. Financial analysis should be done once 
a year. For our example, we will introduce regulation of simulated financial flows for a company by 
CUSUM control chart (see Case Study No 1). In other example, we will describe EWMA control 
chart using also monthly values (see Case Study No 2). The end of this paper will be dedicated to 
the ARIMA, EWMA and CUSUM control charts together with some practical example of autocor-
related data (see Case Study No 3).
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2. ElEmENTAR DATA ASSUmPTIONS
This part is mainly focused on crucial problems with the statistical analysis data assumptions. 
Fundamental assumptions for statistical process regulation can be described as:

data normality, symmetry, 
constant mean of the process,
constant variance (standard deviation) of data,
independence, no autocorrelation in data,
absence of outliers (Meloun and Militký, 2006).

Most data analysis processes and their conclusions are dependent on some fulfilled conditions. 
If they are not fulfilled all other calculations of means, confidence intervals, quantiles, statistical 
tests, Shewhart ś charts, capability indices are questionable and not really correct. These calcu-
lations usually offer incorrect and inaccurate results and conclusions. Therefore we should be 
very careful about above mentioned conditions (data normality, symmetry, etc.). Violations of 
assumptions for the application of regulation by Shewhart ś charts in different technologies are 
displayed in (Meloun and Militký, 2006).
Mentioned conditions should be verified by the help of statistical tests. For example, we can 
meet data asymmetry by the physical quantities such as strength or viscosity. We can meet strong 
autocorrelation (dependence) in continuous processes in chemistry, pharmacy, food and metals. 
Quality of input process material can result into the mean shifting. 
Not normally distributed data can be seen in ecologic processes very often. Data are very asym-
metric with usually lognormal distribution.

3. lITERATURE REVIEW
3.1 Control Charts CUSUM 
The CUSUM control charts are based on the cumulative sums. They were introduced by Page in 
1954. Their main advantage is a very quick detection of relatively small shift in the process mean. 
This detection is significantly quicker than by the Shewhart ś control charts. 
The sequential sums of deviations from µ0 are used for the CUSUM control chart 
construction. If µ0 is a target value for the population mean and if Xj is a sam-
ple mean then the CUSUM control chart is constructed by plotting of variables of the 

   type. This process is called a random walk (Harris and Ross, 1991).

3.2 CUSUM – Chart for Individual Values and for Samples Means from Normally  
      Distributed Data 
Values of xi are independent with the same normal distribution N(µ,σ2) with the known population 
mean and with the known population standard deviation σ. We assume logical subgroups with the 
same volume n. Cumulative sum – CUSUM Cn is defined for individual values (n = 1) as: 
A) on a base of original scale:

(1)
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B) on a base of normal distribution where the mean = 0 and the standard deviation = 1:

     ,  (2)

The CUSUM Cn is almost the same as CUSUM Sn measured in the units of standard deviation σ. 
Equation for Cn can be written recurrently (Chandra, 2001): C0   =   0,
Cn  =  Cn–1 + (xn – µ); and with the same pronciple for Sn: S0  =   0, Sn   =   Sn–1 + Un.
Suppose that the original distribution of observed variable N(µ,σ2)  changes into N(µ+δ,σ2)  dis-
tribution for integer t (at certain moment). It means that the population mean µ will face a certain 
shift of δ. It also means that the shift starts at point (m, Cm) and it grows linearly with the slope δ. 
But the population means shift can be more complicated. The CUSUM control chart can reflect 
all these changes (Harris and Ross, 1991).

3.3 CUSUM for Sample Means  
We have considered mainly the individual values until now. Now, we will consider subgroups 
with m observations and we calculate the sample means from this subgroups. We have to work 
with the sample mean standard deviation 

mx
σσ   . A shift of mean Δ will not be measured 

in the units of σ but in the units of σx in this case. We will substitute the individual values of xi 
with the sample means jx   and the process standard deviation σ with the sample mean standard 
deviation σx in above mentioned formulas. (Lu and Reynolds, 1999)
New Process Mean Estimate 
If there is a shift we can estimate a new process mean from the next formula: 

(3)

where N+  and  N–  is a number of selected points from a moment (Chambers and Wheeler, 1992), 
when Cn

+= 0, resp. when Cn
- = 0.

Comparsion of CUSUM and Shewhart ś Control Charts 

Fig. 1 – Shewhart ś Control Chart. Source: QC Expert 2.5Cz
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Fig. 2 – Control Chart CUSUM. Source: QC Expert 2.5Cz

This example shows practically sensitivity of the CUSUM control chart in comparison with the 
Shewhart ś control chart for the sample means. The CUSUM control chart detects process mean 
deviation towards the lower values (around the subgroup 20 – see Figure 1) while the Shewhart ś 
control chart does not detect this deviation (Harris and Ross, 1991). It does not detect a shift to-
wards the upper values (around the subgroup 56). It only detects a big shift around the subgroup 
70 (see both Figures 1 and 2) (Lu and Reynolds, 1999).

3.4 Dynamic Control Chart EWMA
Dynamic control charts EWMA (Exponentially Weighted Moving Average) are used when the 
following conditions are fulfilled: 

are not independent, with positive autocorrelation
mean is not constant, its changes are slow (Montgomery and Friedman, 1989)

A sudden change in mean will only cause a control limits crossing. These dynamic charts provide 
not only the information about “in control” process but also about the process dynamic develop-
ment. As we mentioned, we consider only data which are not independent with positive autocor-
relation. We will explain it now. If the measured observations are influenced by the previous ones 
we can say that they are dependent. A special case of this dependence is so called autocorrelation 
of 1st degree when this dependence is linear. If there is a positive autocorrelation in data then the 
smaller value follows after the smaller value and the higher value follows after the higher value. 
Data have tendency to preserve their original values. Process is not stable in a case of negative 
autocorrelation. If there is a negative autocorrelation in data then the higher value follows after 
the smaller value and the smaller value follows after the higher value. 
Suppose that we measure values x1, x2, x3, ... for the variable X in the process. Parameter λ (level 
of “forgetting”) is calculated by trying where the function 

 is minimal. Number n is equal to number of measured values of regulated variable. It is recom-
mended that n is greater than 50. If the error values of one-step prediction of ek for the optimal 
value of parameter λ are not correlated and if they have a normal distribution then the center line 
CLk, control limits UCLk and LCLk for the dynamic control chart EWMA are calculated from 
the following formulas (Lu and Reynolds, 1999): 
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where  is a standard deviation of ek  estimate, while ek values are determined for the optimal 
value of parameter λ (Yourstone and Montgomery, 1991).

3.5 ARIMA Control Chart
Classical Shewhart SPC concept assumes that the measured data are not autocorrelated. Even 
very low degree of autocorrelation data causes failure of classical Shewhart control charts. Fail-
ure has a form of a large number of points outside the regulatory limits in control diagram. This 
phenomenon is not unique in the case of continuous processes, where the autocorrelation data 
given by the inertia processes in time (chemical processes, climate processes etc.). Autocor-
relation of data becomes increasingly frequent phenomenon in terms of discrete processes, in 
particular manufacturing processes with short production cycles, high speed production with 
a high degree of automation of production and also in test and control operations. In these 
conditions, it is possible to obtain data about each product, with the consequence that the time 
between measurements (recording) of two consecutive values of the monitored variables is very 
short. One of the ways to tackle autocorrelated data is the concept of stochastic modeling of time 
series using autoregressive integrated moving average models, the ARIMA model. The concept 
of linear stochastic autoregressive models (models AR), moving average (model MA), mixed 
models (the ARMA models), and ARIMA models, based on Box-Jenkins methodology is seen 
as a time series realization of stochastic process. Box-Jenkins methodology represents a modern 
concept analysis of stationary and nonstationary time series based on probability theory. Linear 
models AR, ARMA and MA are modeling tool for the stationary processes. These models have 
a characteristic shape of the autocorrelation fiction (Autocorrelation Fuction – ACF) and partial 
autocorrelation function (Partial Autocorrelation Function – PACF), which are an essential tools 
for providing information about the stochastic process. ACF and PACF estimates are used to 
identify the time series model. There are non-stationary processes in practice very often. Non-
stationarity can be present due to the mean value changing over time or process variance chang-
ing over time. If, after the transformation of nonstationary process variance of “random walk” 
(so-called integrated process) using differential d-th order is the final process model to describe 
the stationary ARMA (p, q), the original integrated process is called an autoregressive integrated 
moving average process of order p, d, q, ie ARIMA (p, d, q) (Noskievičová, 2008).
ARIMA control chart (Autoregresive Integrated Moving Average) is based on the principle of 
finding a suitable time series model and the use of control chart for residuals the model (devia-
tions from the values actually measured values from calculated values with the model use).
The general shape of the model ARIMA (p, d, q) is such

 (4)
where

  is autoregressive polynomial of p-th order,
  is moving averages polynomial of q-th order,

(grad) operator backward difference (this element is introduced when the model exhibits non-station-
arity of the process),
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d difference order,
t  time,
B back shift operator B · xt = (xt-1),
ø1, ø2,....., øp  parameters of autoregressive model,
θ1, θ2,..., θq  parameters of moving averages model,
εt  this variable is called white noise, which is unpredictable fluctuations in the data, has 
a normal distribution with mean equal to zero and constant variance, and its values are uncor-
related.
If est xt is an estimate of empirical value of xt calculated with help of right chosen ARIMA model, 
residuals of this model   will be uncorrelated normally distributed random variables.
Most commonly used in applications are ARIMA models. Let us consider the model
    xt= ξ + øxt-1+ εt         (5)
where ξ a φ (-1 < ø <1) are unknown constants and εt is normally distributed and uncorrelated 
variable with the mean equal to zero and the constant standard deviation σ. This model is called 
autoregressive model of the first order and is denoted as AR(1). The values of the reference mark 
of quality, which are mutually shifted of k time periods (xt and xt–k) have the correlation coef-
ficient øk. This means that autocorrelation function ACF should fall exponentially. If we expand 
the previous equation in the form
    xt= ξ+ ø1xt-1+ ø2xt-2+ εt, (6)
we get equation of second order autoregressive model AR(2). Generally, variable xt is directly 
dependent on the values preceding xt–1, xt–2, etc. in the autoregressive model AR (p). If we model 
the dependence of data using the random component εt, then we get moving average model MA 
(q). Moving average model first order has an equation:
 .    xt = μ + εt-θεt-1.                 (7)
There is some correlation only between two values xt and xt–1. It can be described as follows:  
p1= -θ |(1+ θ2) . This corresponds to the shape of the autocorrelation function ACF (Noskievičková, 
2008). For the modeling of practical problems is often suitable a model compound containing 
both an autoregressive component and the moving averages component. This model is gener-
ally known as ARMA (p, q) (Hušek, 2007). Model ARMA of the first order, i.e. ARMA (1, 1) is 
described by the equation:
     xt= ξ+ øxt-1+ εt-θεt-1     (8)
This model is often suitable for chemical and other continuous processes, where many quality 
characteristics can be easily modeled by the model AR (1). Measurement errors are described by 
random component of the model, which we assume to be random and uncorrelated. The ARMA 
model assumes stationarity process i.e., that the character quality reference values are around a 
stable mean. But often, in practice there are processes (e.g. in the chemical industry), where the 
values of monitored variable are “running away”. Then it is convenient to model processes using 
appropriate model with the operator of backward difference grad, such as the ARIMA model 
(0, 1, 1), the equation is
    xt=xt-1+ εt-θεt-1                 (9)
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Models ARIMA are different from Shewhart model (xt+μ+ε1 for t = 1, 2, …). However, if we put 
φ = 0 in the equation xt= ξ+ øxt-1+ εt or θ=0  in the equation xt= μ+ εt-θεt-1  we get Shewhart model 
process. Another important step in the use of ARIMA models is the choice of the appropriate 
SPC control chart. When residuals testing determined that they are not autocorrelated and come 
from a normal distribution it is possible with them to verify whether or not the process is statisti-
cally stable. Because number of observations equals one (original empirical values  were detected 
by each unit) priority have control charts for individual values and moving range. Location of 
the mean value CL and upper and lower control limits (UCL, LCL) for the ARIMA chart for 
individual values can be determined from the formula

                      (10)

                    (11)

                     (12)
Values CL, UCL and LCL can be calculated as follows
                       (13)
                     (14)
                      (15)
To increase the sensitivity of control charts ARIMA is recommended to use two-sided CUSUM 
control chart with the decision interval ±H or standard EWMA chart, both applied to the re-
siduals of the model. If we pursue more quality characteristics simultaneously on a single product 
to multiple, we can apply to ARIMA models residuals Hotelling chart or CUSUM or EWMA 
charts for more variables (Noskievičová, 2008).

4. RESEARCh mEThOD CONDUCTED
As the title of the paper explains, the primary method used for achieving the goals is the case stud-
ies research. The purpose of these studies is to illustrate how time series charts are found to be 
sensitive in detecting small shifts and we will utilize the fact that these control charts can be used in 
certain situations where the data are autocorrelated. The methodology combined quantitative data 
analysis with financial process simulation, which benefits the reliability of the conclusions.

5. RESUlTS OF ThE CASE STUDIES
5.1 Case Study No 1 – A Use of the CUSUM Control Chart 

µ0 = 10, n = 1, σ = 1,0
We would like to detect the shift 1.0σ = 1.0(1.0) = 1.0 (d = 1,0)
A process mean which is out of control: µ1= 10 + 1 = 11
K = d/2 = 1/2   a  H = 5σ = 5  (recommended)
Equations for the statistics Ci

+ and Ci
– are then:

(16)
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Fig. 3 – The Control Chart CUSUM. Source: QC Expert 2.5Cz

The CUSUM chart shows that the process is out of control (see Figure 3).  Following steps are 
to find the main cause (-s), accept precaution (-s) and to start a new CUSUM again. If the process 
was adjusted it could be useful to estimate mean of the process caused by the shift.

5.2 Case Study No 2 – A Use of Control Chart EWMA
We have following financial data of a certain company (in millions of CZK). The starting value 
of x is 5.00. Now, we construct a control chart for data from the Tab. 1. 

Tab. 1 – Entering Data for Control Chart EWMA. Source: Own Processing

K xk k xk k xk k xk k xk

1 5.01 11 4.85 21 4.80 31 4.77 41 4.65
2 5.11 12 4.99 22 4.84 32 4.60 42 4.67
3 5.04 13 5.05 23 4.78 33 4.51 43 4.50
4 5.12 14 5.38 24 4.82 34 4.58 44 4.50
5 4.94 15 4.97 25 4.88 35 4.67 45 4.44
6 5.01 16 4.84 26 4.78 36 4.51 46 4.44
7 5.11 17 4.77 27 4.80 37 4.57 47 4.53
8 5.18 18 4.78 28 4.81 38 4.56 48 4.53
9 5.04 19 4.82 29 4.88 39 4.57 49 4.57
10 5.18 20 4.78 30 4.75 40 4.60 50 4.34

Fig. 4 – Lineplot. Source: QC Expert 2.5Cz
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It is evident from the Figure 4 that the values of the process are declining – therefore there is 
not a constant process mean. Further, we find out if there is an autocorrelation of the 1st degree 
in the process. We construct a correlation chart between the xk and xk+1 values for k = 1, 2, 3, ..., 
49 (see Figure 5). 

Fig. 5 – Correlation chart between the xk and xk+1 values (scatterplot). Source: QC Expert 2.5Cz

We can see from the Figure 5 now that the scatterplot is ellipse-shaped and that the ellipse main 
axis forms an acute angle with the x-axis. We can conclude from this exploratory data analysis 
that there is a significant first degree positive autocorrelation between the variables xk and xk+1. 
We calculate exact coefficient of autocorrelation between the variables xk and xk+1. It is equal 
to 0.850. Thus, the strong (statistically significant) positive autocorrelation exists between the 
variables xk and xk+1. Therefore we can construct the EWMA dynamic control chart. Further, 
we will compute predicted values  for the empirically chosen values of the parameter λ from the 
interval <0;1>. A starting value was set to the number μ0 = 5.00. We determine the value of 
function (the sum of error squares) for chosen parameter λ at the same time. The calculation of 
the parameter λ = 0.48 is shown in Table 2. This value was found as optimal. Function S(λ) is 
evidently parabolic with one extreme (minimum). 

Tab. 2 – Values of  Function S(λ). Source: Own Processing

λ S(λ) λ S(λ)
0.4 0.663138 0.47 0.658893
0.5 0.659108 0.48 0.658852
0.6 0.665795 0.49 0.658926

The Table 2 shows computing of the optimal λ parameter value. The values of λ can be found 
in the first and the third columns and the values of S(λ) function in the second and the fourth 
columns. The values of S(λ) function for 0.4, 0.5,and 0.6 are given in the first two columns of 
the Table 2. We can see that the function minimum is between values 0.4 and 0.5. Therefore we 
try values of λ equal to 0.47, 0.48 and 0.49. According to the previous calculations, the function 
minimum S(λ) is equal to 0.48. 
The final EWMA control chart is displayed on the Figure 6 where lower and upper control limits 
are plotted with bold full black lines, center line is plotted with line of dashes. Input values of 
quality feature are represented by the bold dots. 



Journal of  Competitiveness ��

Fig. 6 – Control Chart EWMA. Source: QC Expert 2.5Cz

We can conclude from the analysis of the Figure 6 that the process is under control except of the 
14th value. Other values are between the control limits. The 14th value crossing can be caused by 
the process nonstability or by the measurement inaccuracy.

5.3  Case Study No 3 – A Use of Control Charts ARIMA CUSUM and EWMA
We find a suitable model for the time series of annual gross domestic product of the United 
Kingdom which is available in the form of base indices from 1960 to 1997 (1995 = 100). We de-
termine the control chart sensitive to a change of the mean based on this model. Financial data 
are in the following table.

Tab. 3 – Financial Data. Source: Own Processing

t xt t xt t xt t xt

1 45 11 59 21 72 31 94
2 46 12 61 22 71 32 92
3 47 13 63 23 72 33 91
4 49 14 67 24 75 34 93
5 51 15 66 25 77 35 97
6 53 16 66 26 80 36 100
7 54 17 68 27 83 37 102
8 55 18 69 28 87 38 106
9 57 19 72 29 91   
10 58 20 74 30 93   

Fig. 7 – Time Series of Automated Production Process. Source: Own Processing
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The time series is shown on the previous figure 7. It is obvious that the time series is nonstationary, 
which is also confirmed by the shape of the ACF and PACF (Fig. 8) and periodogram (Fig. 9)

Fig. 8 – ACF and PACF of Original Time Series. Source: Own Processing

Fig. 9 – Periodogram of Original Time Series. Source: Own Processing

Because the values of ACF are declining slowly, the first values by ACF and PACF are very close 
to one and the periodogram has a significant peak at zero frequency, we can assume that the time 
series is of a Type I (1) and therefore must be stationarized by the first differences. This conclu-
sion is confirmed by the graph of residuals and residual periodogram (Figure 10), as well as the 
residual ACF and PACF of the model (Fig. 11), whose values lie within the tolerance limits.

Fig. 10 – Residuals and Residual Periodogram of Model ARIMA(0,1,0). Source: Own Processing

Fig. 11 – Residual ACF and PACF of Model ARIMA(0,1,0)c. Source: Own Processing
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Tab. 4 – Output Table of  Model ARIMA(0,1,0)c . Source: Own Processing

Residual ACF and PACF have the first values statistically significantly different from zero. There-
fore cannot be clearly determined whether the model should be extended to include the part of the 
AR(1) or MA(1). First, we estimate ARIMA(1,1,0)c model. The results are presented in Table 5.

Fig. 12 – Residual ACF and PACF of Model ARIMA(1,1,0)c. Source: Own Processing

Although residual ACF and PACF indicate that non-systematic component is a type of white 
noise, as well as the value of “P-value” of the Box-Pierce test is relatively high (0,597248), we will 
also estimate the model ARIMA(0,1,1)c. The Table 5 contains its results.

Tab. 5 – Output Table of Model ARIMA (1,1,0)c  Source: Own Processing 
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Fig. 13 – Residual ACF and PACF of Model ARIMA(0,1,1)c. Source: Own Processing

Residual ACF and PACF of the model also indicate that the type of non-systematic component is 
white noise, the value of “P-value” of the Box-Pierce test (0,794106) is even higher than before. For 
completeness, we estimate another model containing two components, i.e. the AR(1) and MA(1).

Tab. 6 – Output Table of Model ARIMA(0,1,1)c  Source: Own Processing

Fig. 14 – Residual ACF and PACF of Model ARIMA(1,1,1)c. Source: Own Processing

Although residual ACF and PACF in Figure 14 indicate that the residuals are non-systematic and 
“P-value” of the Box-Pierce test is relatively high (0,701229), it is clear from the t-tests of the 
model parameters that the AR(1) part is not a part of the model.
However, not only this conclusion is in favor of the model ARIMA(0,1,1)c. This model leads to a 
higher value of “P-value” of the Box-Pierce test and to lower values of MSE, MAE, MAPE and 
MPE in comparison with the model ARIMA (1,1,0)c.
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Tab. 7 – Output Table of Model ARIMA(1,1,1)c  Source: Own Processing

After comparing the values of “P-value” of the parameters c = μ (0,000048) and θ1 (0,000480) 
with a significance level α (0,05) by a t-test of the Table 6, it is evident that both parameters are 
non-zero and the estimated model has the form
(1-B)yt = 1.67905+(1-(0.569874)B)at,
can be expressed as:
yt = 1.67905+yt-1+at+0.569874at-1.
Forecasts are shown in Figure 15 and a time series plot with smoothed values and predictions is 
shown in Figure 16. 

Fig. 15 – Forecasts. Source: Own Processing

Fig. 16 – Time Series with Forecasts. Source: Own Processing
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Fig. 17 – Control Chart for Individual Values Applied on Residuals of  Chosen ARIMA Model (left) and  
EWMA Control Chart for Residuals of  ARIMA Model with λ = 0.2 (right). Source: Own Processing

From those control charts (Figure 17) can be seen that the process can be regarded as if it is 
statistically stable (no point is outside the control limits), so these limits can be used to verify the 
statistical stability of the process in the next period.

Fig. 18 – CUSUM Chart for Residuals. Source: Own Processing

The CUSUM control chart shows that the V-mask identifies the beginning of increasing hetero-
scedasticity in point 23, which corresponds to a year 1982 (Figure 18). Previous control charts 
show the same changing point in the volatility of the time series and  due to increasing hetero-
scedasticity indicate a growing trend of time series.

6. DISCUSSION
Most traditional control charting procedures are grounded on the assumption that the process 
observations being monitored are independent and identically distributed. With the advent of 
high-speed data collection schemes, the assumption of independence is usually violated. That 
is, autocorrelation among measurements becomes an inherent characteristic of a stable proc-
ess. This autocorrelation causes significant deterioration in control charting performance. To 
address this problem, several approaches for handling autocorrelated processes have been pro-
posed. The most popular procedure utilizes either a Shewhart, CUSUM or EWMA chart of the 
residuals of the appropriately fitted ARMA model. However, procedures of this type possess 
poor sensitivity especially when dealing with positively autocorrelated processes. As an alterna-
tive, we have explored the application of the statistics used in a time series procedure for detect-
ing outliers and level shifts in process monitoring. The study focused on the detection of level 
shifts of autocorrelated processes with particular emphasis on the important AR(1) model. The 
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results presented showed that time series charts are found to be sensitive in detecting small shifts 
and we utilize the fact that these control charts can be used in certain situations where the data 
are autocorrelated.

7. CONClUSION
This paper dealt with the regulation charts applications in financial data. This kind of data is 
very sensitive to mean shifting and strong autocorrelation appears very often. Therefore we put 
a focus on dynamic regulation charts CUSUM, EWMA and ARIMA models. We highlighted 
the versatility of control charts not only in manufacturing but also in managing the financial 
stability of cash flows in this paper. A refined identification of the type of intervention affecting 
the process will allow users to effectively track the source of an out-of-control situation which 
is an important step in eliminating the special causes of variation. It is also important to note 
that the proposed procedure can also be applied when dealing with a more general autoregres-
sive integrated moving average model. Autocorrelated process observations mainly arise under 
automated data collection schemes. Such collection schemes are typically controlled by software 
which can be upgraded to handle SPC functions. Under such an integrated scheme the useful-
ness of the proposed procedure will be optimized. Based on information from chapter 5, we 
would recommend a properly designed time series control charts as a control charts for indi-
vidual measurements in a wide range of applications. These are almost a perfectly nonparametric 
(distribution-free) procedures. 
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